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1. INTRODUCTION: 

Our main objective was to determine whether rtfMRI- and rtEEG-assisted neurofeedback emotion 

regulation training protocols can reduce the symptoms of combat-related post-traumatic stress disorder 

(PTSD), a chronic and disabling psychiatric condition. Individuals with PTSD suffer from the dysregulation of 

several types of emotion, including fear, anxiety, anger, and depression [1–4]. Neurocircuit models of PTSD 

emphasize the role of the amygdala and its reciprocal interactions with the ventromedial prefrontal cortex 

(vmPFC) [5–9]. To advance understanding of the treatment of combat-related PTSD, the current state-of-the-

art research aimed at testing ways to modulate the functions of the emotion circuit implicated in PTSD. We 

utilized recent advances in real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) to 

target and modulate amygdala activity [10–11]. This technique measures neuronal activity with sufficiently high 

temporal resolution that information from the amygdala is immediately available to form a feedback loop. In 

parallel with rtfMRI-nf, we obtained simultaneous measurement of electroencephalography (EEG) signals, 

which directly reflect brain activity in the cerebral cortex [12]. By using the multimodal imaging data, we can 

determine which EEG signals/leads or their combination specifically predict or correlate with clinical 

improvement that has been associated with the rtfMRI-nf training [11,13–17]. This knowledge will enable to 

establish a translational path toward the development of stand-alone real-time EEG neurofeedback (rtEEG-nf) 

training for emotion regulation, which can facilitate the widespread implementation of the treatment approach 

due to the high portability and relatively low cost of EEG systems.  

2. KEYWORDS: 

Combat-related PTSD, fMRI, EEG, emotions, amygdala, neurofeedback 

3. BODY

3.1 RESEARCH ACCOMPLISHMENTS SPECIFIC TO STUDY AIMS. 

We have developed novel methodological approaches to improved EEG and fMRI data analysis described 

below in the novel data analysis methods section. Further, we have developed data processing pipelines to 

accomplish the study aims. We conducted data analysis for Aim #1, including the following: i) validating 

whether Veterans with PTSD can tolerate well and use rtfMRI-nf training to enhance their control of the 

hemodynamic response of the amygdala, and to further assess specificity of this training; ii) evaluating whether 

the training procedure resulted in PTSD symptom reductions, and iii) evaluating possible sustained 

neuroplastic changes induced by the procedure. For Aim #2 data analysis included the following: i) performing 

EEG analysis to investigate EEG correlates of the rtfMRI-nf procedure and identify EEG features suitable for a 

stand-alone EEG-nf training protocol, and ii) conducting EEG exploratory analyses focusing on temporally 

independent EEG microstates. For Aim #3 —although we have not yet reached the intended recruitment 

target— we conducted preliminary analyses to examine the feasibility of EEG-nf based on frontal asymmetry in 

the EEG alpha band. Descriptions of the above analyses follow below. 

A) Real-time fMRI neurofeedback training of amygdala activity with simultaneous EEG in Veterans with 
combat-related PTSD 

A1. Introduction 

We report the results from the first controlled emotion regulation study in Veterans with combat-related PTSD 

utilizing rtfMRI-nf of amygdala activity. The study included three rtfMRI-nf training sessions wherein brain 

activity was simultaneously monitored via electroencephalography (EEG) and fMRI. We analyzed effects of 
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rtfMRI-nf of the amygdala resulting from the first neurofeedback session to verify that Veterans can tolerate this 

procedure well. In addition, we aimed to demonstrate that rtfMRI-nf of amygdala activity has resulted in PTSD 

symptom reduction and has the capacity to correct the amygdala-prefrontal functional connectivity deficiencies 

observed in PTSD (Aim #1). Finally, from concurrently recorded EEG data we investigated EEG correlates of 

the rtfMRI-nf procedure (Aim #2). 

A2. Methods 

A2.1 Study overview 

The study included eight 

sessions (visits), illustrated 

schematically in Fig. A1A. The 

visits were typically scheduled 

one week apart. Each visit 

involved a psychological 

evaluation by a licensed 

psychiatrist in addition to 

experimental procedures. Visit 1 

included an initial assessment. It 

included administration of the 

following tests: the Edinburgh 

Handedness Inventory (EHI, 

[18]), the Family Interview for 

Genetic Studies (FIGS, [19]), the 

Fagerström Test for Nicotine 

Dependence (FTND, [20]), the 

Hollingshead Four-factor Index of Socioeconomic Status (SES, [21]), the Quick Inventory of Depressive 

Symptomatology (QIDS, [22]), and the 21-item Hamilton Depression Rating Scale (HDRS, [23]). Visit 2 

included the initial assessment of PTSD severity by means of the Clinician-Administered PTSD Scale for DSM-

IV (CAPS; [24,25]). The CAPS was administered by trained raters blinded to the group participants were 

assigned to. It also included completion of the 20-item Toronto Alexithymia Scale (TAS-20; [26]), and the 

Emotion Contagion Scale (EC; [27]). Visit 3 included the emotional counting Stroop task (ecStroop; [29]) with 

simultaneous fMRI, and the Script-Driven Imagery Procedure (SDIP; [29]) with the Responses to Script-Driven 

Imagery Scale (RSDI; [30]). At the beginning of the visit, the HDRS, the Montgomery-Asberg Depression 

Rating Scale (MADRS; [31]), the PTSD Checklist Military Version (PCL-M; [32]), the Hamilton Anxiety Rating 

Scale (HARS; [33]), and the Snaith-Hamilton Pleasure Scale (SHAPS; [34]) were administered. The Profile of 

Mood States (POMS; [35]) and Visual Analog Scales (VAS) ranging from 0 (not at all) to 10 (extremely) for 

happy, restless, sad, anxious, irritated, drowsy, and alert states were completed by participants both before and 

after the ecStroop and the SDIP procedures. Visits 4, 5, and 6 were the neurofeedback training sessions, 

which involved the rtfMRI-nf with simultaneous EEG procedure, illustrated in Fig. A1B. At the beginning of each 

session, the HDRS, the MADRS, the HARS, the PCL-M, and the SHAPS scales were administered. The 

POMS and the VAS were completed both before and after the rtfMRI-nf procedure in each visit. Visit 7 included 

the same tests and procedures as Visit 3. Visit 8 included the final assessments of PTSD severity using the 

CAPS. 

Figure A1. The study overview. 
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A2.2 Participants 

Participants provided written informed consent as approved by the IRB. They met the Diagnostic and Statistical 

Manual of Mental Disorders-Fourth Edition Text Revision (DSM-IV-TR) (American Psychiatric Association, 

2000) criteria for PTSD. All the subjects were male and had PTSD related to combat trauma as their primary 

diagnosis. They received monetary compensation for their participation in the study. 

Participants were randomly assigned to either the experimental group (EG) or the control group (CG) at 

approximately a 2:1 ratio and they were blinded to group status. During the rtfMRI-nf training sessions (visits 4, 

5, 6), the EG was provided with rtfMRI-nf based on BOLD activity of the LA [11]. The CG was provided with 

control rtfMRI-nf based on BOLD 

activity of a brain region, presumably 

not involved in emotion processing [11]. 

Selection of the target regions for 

rtfMRI-nf is described in detail below. 

Table 1 reports main characteristics of 

the EG and CG groups. After excluding 

participants with severe head motions, 

in the EG, 20 participants completed the 

first rtfMRI-nf session (visits 1-4), and 

15 of them completed the whole study (visits 1-8, Fig. A1A). In the CG, 11 subjects completed the first rtfMRI-nf 

session, and 8 of them completed the whole study. There were no significant group differences in age, CAPS, 

PCL-M, HDRS, or MADRS ratings at baseline. 

A2.3 Experimental protocol 

The experimental protocol for each rtfMRI-nf session (Fig. A1B) was like the one we employed previously in 

rtfMRI-nf studies with healthy participants [11] and MDD patients [17,36]. Prior to each rtfMRI-nf session, a 

participant was given detailed instructions that included an overview of the experiment and an explanation of 

each experimental task. The participant was asked to think of and write down three happy autobiographical 

memories, keeping them private. It was suggested that the participant use those three memories at the 

beginning of the rtfMRI-nf training to evaluate their effects, and then explore various other happy 

autobiographical memories as the training progressed to enhance happy emotion and improve rtfMRI-nf 

performance. 

Each rtfMRI-nf session included seven fMRI runs (Fig. A1B), and each run lasted 8 min and 46 s. During the 

initial and final Rest runs, participants were asked to relax and rest while looking at a fixation cross. The five 

task runs – the Practice run, Run 1, Run 2, Run 3, and the Transfer run – consisted of alternating 40-s long 

blocks of Happy Memories, Count, and Rest conditions (Fig. A1B). The real-time GUI display screens for these 

conditions are shown schematically in Fig. A1C. Each condition was specified by visual cues that included a 

colored square with the condition name at the center of the screen and a text line at the top of the screen. For 

the Happy Memories condition blocks, participants were instructed to feel happy by evoking and contemplating 

happy autobiographical memories while simultaneously trying to raise the variable-height red rtfMRI-nf bar on 

the screen to the target level of the blue bar (Fig. A1C, left). The red bar height was updated every 2 s, and 

was also indicated by the red numeric value shown above the bar (Fig. A1C, left). For the Count condition 

blocks, the subjects were instructed to mentally count back from 300 by subtracting a given integer as shown 

on the screen (Fig. A1C, middle). For the Rest condition blocks, participants were asked to rest and let their 

minds wander while looking at the screen (Fig. A1C, right). 
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During the four rtfMRI-nf runs (Practice, Runs 1-3), participants performed the three experimental tasks as 

indicated by the GUI display screens shown in Fig. A1C. The target level for the rtfMRI-nf (blue bar in Fig. A1C, 

left) was fixed during each run, but was raised in a linear fashion across the four nf runs. It was set to 0.5%, 

1.0%, 1.5%, and 2.0% for the Practice run, Runs 1-3, respectively (see Fig. A3A below). During the Practice 

run, participants were given an opportunity to become familiar with (or refresh knowledge of) the rtfMRI-nf 

procedure and to consider the emotional impact of the three happy autobiographical memories they had 

prepared. During the Transfer run, the participants performed the same tasks as during the preceding nf runs, 

except that no bars were shown on the screen during the Happy Memories conditions, and the text line read 

“As Happy as possible”. The Transfer run was included to evaluate whether participants’ learned ability to 

control BOLD activity of the target ROI generalized beyond the actual rtfMRI-nf training when the nf information 

was no longer provided. The Count conditions involved counting back from 300 by subtracting 3, 4, 6, 7, and 9 

for the Practice run, Runs 1-3, and the Transfer run, respectively. After each experimental run with the Happy 

Memories task, a participant was asked to verbally rate his performance on a scale from 0 (not at all) to 10 

(extremely) by answering two questions: “How successful were you at recalling your happy memories?” and 

“How happy are you right now?”. 

A2.4 Regions of interest 

The rtfMRI-nf procedure was based on the target region-of-interest (ROI) approach we employed previously 

[11,17]. Two target ROIs were defined as 14-mm diameter spheres in the stereotaxic array of Talairach and 

Tournoux [37]. The target ROI centered at (−21, −5, −16) in 

the left amygdala (LA) region (Fig. A2A) was used for the 

EG. The target ROI centered at (−42, −48, 48) in the left 

horizontal segment of the intraparietal sulcus (LHIPS) 

region (Fig. A2B) was used for the CG. The specified ROI 

centers were selected based on quantitative meta-analyses 

of functional neuroimaging studies investigating the role of 

the amygdala in emotion processing [38] or the role of the 

HIPS in number processing [39]. During the experiment, 

these target ROIs were transformed from the Talairach 

space to each participant’s individual fMRI (EPI) image 

space and used to provide rtfMRI-nf signal depending on 

the group. For offline fMRI data analysis, the left amygdala 

(LA) and the right amygdala (RA) ROIs (Fig. A2C) were 

defined anatomically as the amygdala regions specified in 

the Talairach-Tournoux brain atlas in AFNI [40]. 

A2.5 Data acquisition 

All experiments were conducted on the General Electric Discovery MR750 3T MRI scanner with a standard 8-

channel receive-only head coil (Fig. A2D). A single-shot gradient echo EPI sequence with FOV/slice=240/2.9 

mm, TR/TE=2000/30ms, flip angle=90°, 34 axial slices per volume, slice gap=0.5 mm, SENSE R=2 in the 

phase encoding (anterior-posterior) direction, acquisition matrix 96×96, sampling bandwidth=250 kHz, was 

employed for fMRI. Each fMRI run lasted 8 min 46 s and included 263 EPI volumes (the first three EPI volumes 

were excluded to allow the fMRI signal to reach a steady state and were excluded from data analysis). 

Physiological pulse oximetry and respiration waveforms were recorded simultaneously with fMRI. The EPI 

images were reconstructed into a 128×128 matrix, resulting in 1.875×1.875×2.9 mm3 fMRI voxels. A T1-

weighted 3D MPRAGE sequence with FOV/slice=240/1.2 mm, TR/TE=5.0/1.9 ms, TD/TI=1400/725 ms, flip 
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angle=10°, 128 axial slices per slab, SENSE R=2, acquisition matrix 256×256, sampling bandwidth=31.2 kHz, 

scan time=4 min 58 s, was used for structural imaging. It provided high-resolution anatomical brain images 

with 0.94×0.94×1.2 mm3 voxels.  

EEG recordings were performed simultaneously with fMRI (Fig. A2D) using a 32-channel MR-compatible EEG 

system from Brain Products, GmbH. The EEG system clock was synchronized with the MRI scanner 10 MHz 

clock using the Brain Products’ SyncBox device. EEG data were acquired with 0.2 ms temporal and 0.1 µV 

measurement resolution (16-bit 5 kS/s sampling) in 0.016-250 Hz frequency band with respect to FCz 

reference. All technical details of the EEG-fMRI system configuration and data acquisition were reported 

previously [41]. Similar to our recent study [17], the EEG recordings in the present work were passive, i.e. no 

EEG information was used in real time as part of the experimental procedure. 

A2.6 Real-time data processing 

The rtfMRI-nf was implemented using the custom real-time fMRI system utilizing real-time functionality of AFNI 

[40] as described previously [11]. A high-resolution MPRAGE anatomical brain image and a short EPI dataset 

(5 volumes) were acquired prior to each rtfMRI-nf session. The last volume in the EPI dataset was used as a 

reference EPI volume defining the subject’s individual EPI space. The LA and LHIPS target ROIs, defined in 

the Talairach space (Fig. A2A,B) were transformed to the individual EPI space using the MPRAGE image data. 

The resulting ROIs in the EPI space contained approximately 140 voxels each. During the subsequent fMRI 

runs (Fig. A1B), the AFNI real-time plugin was used to perform volume registration of each acquired EPI 

volume to the reference EPI volume (motion correction) and export mean values of fMRI signals for these ROIs 

in real time. The custom developed GUI software was used to further process the exported fMRI signal values 

and display the ongoing rtfMRI-nf information (Fig. A1C). The rtfMRI signal for each Happy Memories condition 

was computed as a percent signal change relative to the baseline obtained by averaging fMRI signal values for 

the preceding Rest condition block (Fig. A1B). A moving average of the current and two preceding rtfMRI 

signal values was computed to reduce effects of fMRI noise and physiological artifacts [11]. This average value 

was used to set the height of the red rtfMRI-nf bar (Fig. A1C) every TR=2 s. 

A2.7 fMRI data analysis 

Our analysis focused on the first neurofeedback training session (Visit 4) to evaluate and understand effect of 

rtfMRI-nf in neurofeedback-naive PTSD individuals before examining effects across multiple sessions. Offline 

analysis of the fMRI data was performed in AFNI as described in detail in Supplementary material (S1.1). The 

analysis involved fMRI pre-processing with despiking, cardiorespiratory artifact correction [42], slice timing 

correction, and volume registration. A general linear model (GLM) analysis with Happy Memories and Count 

block-stimulus conditions was applied to the preprocessed fMRI data. Average GLM-based fMRI percent signal 

changes were computed for the LA and RA ROIs, shown in Fig. A2C. 

A2.8 fMRI connectivity analysis  

Analysis of fMRI functional connectivity for the LA as the seed region was performed within the GLM 

framework. The fMRI data were bandpass filtered between 0.01 Hz and 0.08 Hz. The six fMRI motion 

parameters were similarly filtered. The LA ROI (Fig. A2C) was transformed to each subject’s individual high-

resolution anatomical image space, and then to the individual EPI image space. The LA ROI in the EPI space 

included ~100 voxels. In addition, 10-mm-diameter ROIs were defined within the left and right frontal white 

matter (WM) and within the left and right ventricle cerebrospinal fluid (CSF). These ROIs were defined using 

individual high-resolution anatomical brain maps and similarly transformed. The resulting ROIs in the individual 

EPI space were used as masks to obtain average time courses for the LA, left and right WM, and left and right 

CSF regions. The GLM-based functional connectivity analysis was conducted for each task run using the 
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3dDeconvolve AFNI program. The -censor option was used to restrict the analysis to the Happy Memories 

condition blocks in each run. The GLM model included the time course of the LA ROI as the stimulus (seed) 

regressor. Nuisance covariates included five polynomial terms, time courses of the six fMRI motion parameters 

(together with the same time courses shifted by one TR), time courses of the left and right WM and CSF ROIs 

to reduce physiological noise [43], and step functions to account for the breaks in the data between the Happy 

Memories condition blocks. Each GLM analysis provided R2-statistics and t-statistics maps for the stimulus 

regressor term, which we used to compute the correlation coefficient for each voxel. The correlation coefficient 

maps were Fisher r-to-z normalized, transformed to the Talairach space, and re-sampled to 2×2×2 mm3 

isotropic voxel size. The resulting individual LA functional connectivity maps were spatially smoothed (5 mm 

FWHM) and submitted to group analyses. 

Group analysis of fMRI connectivity for one task run (e.g., the Practice run) was performed using the 3dttest++ 

AFNI program. The analysis included three covariates: the CAPS ratings, the HDRS ratings, and the average 

individual fMRI connectivity of the LA with central white matter. The last covariate accounted for residual 

spurious LA connectivity effects caused, for example, by head motion. The central white matter mask was 

defined using the standard AFNI white matter mask in the Talairach space (TT_wm), that was re-sampled to 

2×2×2 mm3 voxels, subjected to three-step erosion, and limited to 15<z<35 mm slab. The individual-subject LA 

connectivity values for the same run were averaged within this mask to yield a single covariate value for each 

subject. Centering of the 

three covariates was 

performed within the 

3dttest++ program by 

subtraction of their means. 

The LA fMRI connectivity vs 

CAPS correlation effect was 

the main effect of interest. 

The statistical results were 

corrected for multiple 

comparisons by controlling 

the family-wise-error 

(FWE).  

Analysis of fMRI connectivity enhancement across the four neurofeedback runs was conducted as follows. An 

fMRI connectivity slope (FCS) was defined for each voxel as a slope of a linear trend in fMRI connectivity with 

the LA seed ROI across the Happy Memories conditions in the four rtfMRI-nf runs (Practice, Run 1, Run 2, Run 

3), as illustrated in Fig. A3B. The LA fMRI connectivity maps in the Talairach space for the four rtfMRI-nf runs 

were concatenated, and the 3dTfitter AFNI program was used to carry out a voxel-wise linear trend analysis, 

yielding the FCS map for each subject. Group analysis on the FCS data was performed using the 3dttest++ 

AFNI program. The analysis included three covariates: CAPS ratings, HDRS ratings, and the average 

individual LA FCS for central white matter. The last covariate was computed using the same white matter mask 

as described above, and accounted for spurious LA connectivity trends across the four runs. The FCS vs 

CAPS correlation effect and the mean FCS effect were the main effects of interest. The statistical results were 

corrected for multiple comparisons by controlling the FWE as explained above. 

A2.9 EEG data analysis 

Offline analysis of EEG data, acquired simultaneously with fMRI, was performed using BrainVision Analyzer 

2.1 software (Brain Products, GmbH) as described in detail in Supplementary material (S1.2). Removal of EEG 
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artifacts was based on the average artifact subtraction and independent component analysis [44,45]. Channel 

Cz was selected as a new reference, and FCz was restored as a regular channel. Following the artifact 

removal, data from 29 EEG signal channels were down sampled to 8 ms temporal resolution. The upper alpha 

EEG band was defined individually for each participant as [IAF...IAF+2] Hz, where IAF is the individual alpha 

peak frequency. The IAF was determined by inspection of average EEG spectra for the occipital and parietal 

EEG channels across the Rest condition blocks in the four rtfMRI-nf runs (Fig. A1B). 

A2.10 EEG coherence analysis 

EEG coherence analysis was conducted separately for the Rest and Happy Memories conditions in each of the 

four rtfMRI-nf runs (Fig. A1B). The analysis included a segmentation with 4.096 s intervals (with exclusion of 

bad intervals, see S1.2), a complex FFT with 0.244 Hz spectral resolution, and the Coherence transform 

implemented in the Analyzer 2.1. A coherence value for signals from two EEG channels at a given frequency 

was computed as the squared magnitude of their cross spectrum value normalized by their power spectrum 

values at the same frequency (‘magnitude-squared coherence’ method). An average coherence value for the 

upper alpha band [IAF...IAF+2] Hz was then computed for each channel pair.  

Analysis of EEG coherence enhancement across the four neurofeedback runs was performed as follows. An 

EEG coherence slope (ECS) was defined for each channel pair as a slope of a linear trend in the upper alpha 

EEG coherence changes between the Rest and Happy Memories conditions across the four rtfMRI-nf runs 

(Practice, Run 1, Run 2, Run 3), as illustrated in Fig. A3C. Analysis of partial correlations between the ECS 

values and the CAPS ratings, controlling for HDRS ratings, was performed using the partialcorr function in 

MATLAB. To alleviate the multiple comparisons problem, average ECS values were computed for previously 

defined groups of fronto-temporal EEG channels [17], and their partial correlations with the CAPS ratings were 

evaluated. 

A2.11 Statistical tests 

Inferential statistical analyses 

were performed in IBM SPSS 

Statistics 20. Correction for 

multiple comparisons was 

based on controlling the false 

discovery rate (FDR q), which 

was computed by applying the 

3dFDR AFNI program to a 

column of uncorrected p-

values from multiple tests. 

Partial correlation analyses 

were conducted using 

MATLAB Statistics toolbox. 

A3. Results 

A3.1 Psychological measures 
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Changes in PTSD severity and comorbid depression severity for the PTSD Veterans who completed the study 

are reported in Table 2. The initial and final 

CAPS ratings were assessed during visits 2 and 

8, respectively (Fig. A1A). The initial and final 

HDRS ratings were determined during visits 3 

and 7, respectively. The participants in the EG 

showed a significant reduction in the total CAPS 

ratings after the study (EG: t(14)=−3.69, 

p<0.0024, q<0.004), with significant reductions 

in sub-scores for avoidance symptoms (EG: 

t(14)=−3.78, p<0.0020, q<0.004) and 

hyperarousal symptoms (EG: t(14)=−2.54, 

p<0.024, q<0.030). The EG participants also 

exhibited a significant reduction in the HDRS 

ratings (EG: t(14)=−4.61, p<0.0004, q<0.002).  

The participants in the CG also showed a 

nonsignificant reduction in total CAPS ratings 

(CG: t(7)=−1.75, p<0.124, q<0.207). The 

corresponding reductions in avoidance 

symptoms (CG: t(7)=−1.95, p<0.092, q<0.207) 

and HDRS ratings (CG: t(7)=−2.28, p<0.056, 

q<0.207) were also nonsignificant.  

In the EG, 12 participants out of 15 (80%) 

demonstrated clinically meaningful reductions in 

CAPS ratings (by 10 points or more). In the CG, 

3 subjects out of 8 (or 38%) showed clinically meaningful CAPS reductions. However, no significant difference 

in the CAPS rating changes (final vs initial) was observed between the two groups (EG vs CG: t(21)=−0.90, 

p<0.377). Similarly, the HDRS rating changes (final vs initial) showed no significant group difference (EG vs 

CG: t(21)=−0.22, p<0.825). 

A3.2 Amygdala BOLD activity 

Figure A4 shows results of the offline fMRI activation analysis for the LA and RA ROIs (Fig. A2C). The results 

are for the first rtfMRI-nf session (visit 4; EG: n=20; CG: n=11). The LA BOLD activity levels for the Happy 

Memories conditions for the EG (H vs R, Fig. A4A, left) were significant for Run 3 (R3: t(19)=3.03, p<0.007, 

q<0.035) and for the Transfer run (TR: t(19)=2.63, p<0.017, q<0.042). There was no significant difference in 

the LA activity between these two runs (TR vs R3: t(19)=−1.33, p<0.199). The RA BOLD activity levels for the 

EG (H vs R, Fig. A4A, right) were significant for Run 3 (R3: t(19)=3.04, p<0.007, q<0.034) and trended toward 

significance after correction for the Transfer run (TR: t(19)=2.24, p<0.037, q<0.093). Similar to the LA, there 

was no significant difference in the RA activity between these two runs (TR vs R3: t(19)=−1.16, p<0.259). For 

the CG, BOLD activity levels for either the LA or the RA were not significant (Fig. A4B). To compare the 

neurofeedback effects between the EG and CG groups, we examined average individual BOLD activity levels 

across the three rtfMRI-nf training runs (Runs 1-3). For the average LA BOLD activity levels, Levene’s test for 
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equality of variances suggested that variances differed between the groups (F=4.79, p<0.037). An 

independent-samples t-test with Welch-Satterthwaite adjustment indicated that the average LA BOLD activity 

levels were significantly higher for 

the EG than for the CG 

(t(28.18)=2.38, p<0.024, equal 

variances not assumed). For the 

average RA BOLD activity levels, 

variances did not differ between 

the groups (F=0.14, p<0.908). The 

difference in the average RA 

BOLD activity levels between the 

EG and the CG trended toward 

significance (t(29)=1.76, p<0.088). 

A3.3 Amygdala Connectivity during 

Practice 

All fMRI connectivity and EEG 

coherence results reported below 

correspond to the first rtfMRI-nf 

session (Fig. A1A, visit 4). The 

initial CAPS ratings (visit 2) and 

initial HDRS ratings (visit 3) were 

used in partial correlation 

analyses. Figure A5 shows whole-

brain group statistical maps of the 

correlation between the LA fMRI 

connectivity during Happy Memories 

conditions in the Practice run and 

CAPS ratings for the EG. Data from 

n=19 EG participants were included 

in the analysis. One outlier EG 

participant, whose initial CAPS rating 

was much higher (CAPS=95) than 

the rest of the EG subjects, was 

excluded from the analysis to avoid 

biasing the group results. One outlier 

EG participant, whose initial CAPS 

rating was much higher (CAPS=95) 

than the rest of the EG subjects, was 

excluded from the analysis to avoid 

biasing the group results. The group 

statistical maps in Fig. A5 were 

thresholded at t=±2.95 (uncorr. 

p<0.01) and clusters containing at 

least 75 voxels (FWE corr. p<0.05) are shown in the figure. 
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The cluster properties are described in Table 3. The results in Fig. A5 and Table 3 demonstrate that, at the 

beginning of the training, fMRI 

connectivity with the LA 

showed negative correlations 

with PTSD severity for many 

prefrontal brain regions, 

particularly the LOFC, the 

MOFC, the rACC, and the 

DLPFC. For the CG, the 

correlations during the Practice 

run are similar to those for the 

EG in Fig. A5. 

The negative correlation effects 

mapped in Fig. A5 are 

illustrated in Figure A6. Note 

that several other regions 

exhibited positive correlations 

between their fMRI connectivity 

with the LA and CAPS ratings, 

but the corresponding clusters 

were not large enough to survive 

the whole-brain FWE correction. 

For example, these regions 

included the left caudate at (−19, 

−25, 20) (t=5.21, 62 vox.), the 

right mediodorsal nucleus (MD) 

of the thalamus at (3, −16, 15) 

(t=5.46, 26 voxels), the right 

amygdala at (25, −7, −20) 

(t=5.00, 24 voxels), the right 

precuneus (PCun, BA 39) at (27, 

−57, 31) (t=4.24, 22 voxels), the 

left precuneus (BA 7) at (−25, 

−61, 31) (t=4.24, 22 voxels). The 

correlation effects for the R MD 

and the R PCun are also 

illustrated in Fig. A6. 

A3.4 Amygdala connectivity 

enhancement  

Figure A7 exhibits whole-brain 

group statistical maps of the 

correlation between the LA fMRI connectivity slope (FCS) across Happy Memories conditions in the four 

rtfMRI-nf runs (Fig. A3B) and CAPS ratings. The results are for the same EG participants (n=19) as in Figs. A5 

and A6. The maps in Fig. A7 were thresholded at t=±2.95 (uncorr. p<0.01) and clusters containing at least 81 
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voxels (FWE corr. p<0.025) are shown in the figure. The cluster properties are specified in Table 4. The table 

also includes statistical results for the mean FCS effect, thresholded and clustered in the same way (FWE corr. 

p<0.025, to account for testing the 

two effects). The mean FCS effect 

was obtained in the same group 

analysis and corresponds to the 

mean values of the covariates 

(CAPS ratings, HDRS ratings, LA 

FCS for white matter). The results in 

Fig. A7 and Table 4 demonstrate 

that the fMRI connectivity 

enhancement (FCS) with the LA 

during the training exhibited positive 

correlations with PTSD severity for 

several prefrontal regions, including the LOFC and the DLPFC. The left DLPFC also showed a significant fMRI 

connectivity enhancement with the LA that was independent of the CAPS and HDRS variability (the mean FCS 

effect, Table 4). For the CG, no significant positive FCS vs CAPS correlations or mean FCS effects were found 

within the PFC. 

The positive correlation effects 

mapped in Fig. A7 are illustrated in 

Figure A8. Note that several other 

regions that showed negative 

correlations in Figs. A5 and A6 

exhibited positive correlations 

between the FCS and CAPS, but the 

corresponding clusters did not 

survive the whole-brain FWE 

correction. For example, these 

regions included the right LOFC at 

(55, 25, −1) (t=5.22, 68 voxels), the 

left MOFC at (−1, 39, −15) (t=3.99, 

25 voxels). Furthermore, some 

regions showed negative 

correlations between the FCS and CAPS, such as the right precuneus/posterior cingulate at (23, −62, 25) 

(t=−3.71, 39 voxels). The correlation effects for these regions are also illustrated in Fig. A8. 

A3.5 EEG coherence enhancement 

Figure A9 demonstrates correlations between the EEG coherence slope (ECS) for the upper alpha EEG band 

across the four rtfMRI-nf runs (Fig. A3C) and CAPS ratings for the EG. The EEG recordings were conducted 

simultaneously with fMRI (Fig. A2D). Data from 18 EG participants were included in the ECS vs CAPS 

correlation analysis, with the same outlier excluded as described above along with a second participant whose 

data were excluded due to excessive EEG-fMRI artifacts. According to Fig. A9A, the ECS exhibited positive 

correlations (r(15)>0, p<0.05, uncorr.) with CAPS ratings for many EEG channel pairs, particularly those 

involving frontal and left temporal (T7) EEG channels. (Negative correlations, r(15)<0, did not reach the p<0.05 

statistical threshold). This correlation effect is illustrated in Fig. 9B for one channel pair.  
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Following our previous work 

[17], we defined average 

ECS for 10 pairs of fronto-

temporal EEG channels on 

the left, ECS(L), and for 10 

corresponding channel pairs 

on the right, ECS(R), as 

detailed in Fig. A9C,D. The 

ECS(L) demonstrated a 

significant positive 

correlation with CAPS 

ratings (Fig. A9C). The 

average ECS laterality, 

ECS(L)−ECS(R), showed a 

positive correlation with 

CAPS that trended toward 

significance (Fig. A9E). 

 

A. Discussion 

The EG participants who completed the first rtfMRI-nf training session (n=20) were able to significantly 

increase LA BOLD activity during the Happy Memories conditions in Run 3 and in the Transfer run. This 

suggests participants gradually learned to upregulate LA activity as the training progressed. Importantly, the LA 

BOLD activity levels averaged across the three rtfMRI-nf training runs (Runs 1-3) were significantly higher for 

the EG than for the CG. However, the PTSD patients in the EG only achieved mean LA activity levels for 

individual runs in the range from 0.1% to 0.2% (Fig. A4A). This is lower than the 0.2% to 0.3% mean LA activity 

range for MDD patients who followed the same protocol in our previous study [17].  

Functional connectivity of the LA during the Happy Memories conditions in the Practice run of the first rtfMRI-nf 

session served as an estimate of the task-specific LA connectivity at the beginning of the training. During this 

run, the participants were exposed to the rtfMRI-nf for the first time and did not yet know how to effectively 

control the rtfMRI-nf signal. The results in Fig. A5 and Table 3 demonstrate negative correlations between the 

LA fMRI connectivity and the initial CAPS ratings for many prefrontal regions, including the LOFC (BA 47, 11), 

MOFC (BA 11), DLPFC (BA 9, 8), VLPFC (BA 45), medial frontopolar cortex (BA 9), and rACC (BA 24). These 

results are consistent with the PFC hypoactivity pattern previously observed among people with PTSD [46-48]. 

At the same time, the LA connectivity with several brain regions, including the right amygdala, the right MD, 

and the bilateral precuneus (BA 39, 7), exhibited positive, though smaller, correlations with the CAPS ratings 

(Sec. 3.3, Fig. A6). Parietal regions, including the precuneus and the inferior parietal lobule, are known to be 

hyperactive together with the amygdala in PTSD [46-48]. Our results suggest that fMRI connectivity between 

the amygdala and regions of the autobiographical memory recall system (MD, precuneus) is increased in 

PTSD not only during recollection of traumatic events, but also during retrieval of happy autobiographical 

memories. 

The main result of the present work was the observation of the significant positive correlations between PTSD 

severity and the LA fMRI connectivity enhancement (FCS) for several PFC regions during the rtfMRI-nf 

training. This positive FCS vs CAPS correlation effect is observed for the left LOFC (BA 47, 11), bilateral 

DLPFC (BA 9), and left precentral gyrus (BA 4) for the EG (Fig. A7, Table 4). Positive, though less robust, 

correlation effects were also observed for the right LOFC (BA 47) and the left MOFC (BA 11), as illustrated in 
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Fig. A8. Such positive correlations suggested that the patients with more severe PTSD (higher CAPS ratings) 

showed more positive changes in the LA connectivity with these PFC regions as the rtfMRI-nf training 

progressed. For the right precuneus, the corresponding LA connectivity changes were more negative (Fig. A8). 

Therefore, the results in Figs. A7 and A8 demonstrate correction (at least partial) of the LA fMRI connectivity 

deficiencies specific to PTSD and evident in Figs. A5 and A6. Furthermore, the EG participants exhibited a 

significant mean FCS effect in the left DLPFC (BA 9) (Table 4). This effect indicated a significant fMRI 

connectivity enhancement between the LA and the left DLPFC across the rtfMRI-nf runs, independent of the 

PTSD and depression severity (and corresponding to the mean CAPS and HDRS ratings for the EG). This 

finding is generally consistent with the positive group-average fMRI connectivity changes between the 

amygdala and the DL/DMPFC during the rtfMRI-nf task reported by Nicholson [49]. 

EEG recordings performed simultaneously with fMRI allowed us to investigate electrophysiological correlates 

of the rtfMRI-nf training. We examined variations in EEG coherence, which is an EEG measure of functional 

connectivity, across the four rtfMRI-nf runs. The average enhancement in upper alpha EEG coherence for the 

fronto-temporal EEG channels on the left, ECS(L), significantly correlated with PTSD severity for the EG (Fig. 

A9C). Note that this positive ECS vs CAPS correlation effect is directly related to the positive FCS vs CAPS 

correlation effect in Fig. A7 and Table 4. Indeed, four out of five clusters in Fig. A7 appear within the left PFC. 

Stronger functional connectivities among these PFC regions and the LA likely result in stronger coherences for 

EEG signals measured above these regions. Importantly, the enhancements in functional connectivity that 

accompany the rtfMRI-nf training may therefore be observable in both fMRI and EEG domains.  

Our study demonstrated that rtfMRI-nf of amygdala activity to enhance emotion regulation ability may be 

beneficial to Veterans with combat-related PTSD. Our fMRI and EEG results independently suggest that the 

rtfMRI-nf training has the potential to correct the amygdala-PFC functional connectivity deficiencies specific to 

PTSD. The most significant PTSD-specific enhancements in fMRI connectivity between the LA and the PFC 

were observed for the LOFC and DLPFC regions, which are parts of the EF/ER system. Because activities of 

these cortical regions can be probed using EEG, EEG-nf based on frontal EEG asymmetry in alpha band may 

complement the rtfMRI-nf of the amygdala. 

B) Correlation between amygdala BOLD activity and frontal EEG asymmetry in PTSD 

 

B. Introduction  

In separate analyses to establish a neurofeedback target for Aim #3 of the study (i.e., stand-alone EEG 

neurofeedback) we investigated the connection between frontal EEG asymmetry and BOLD activity during the 

rtfMRI-nf training in PTSD by performing EEG-fMRI correlation analysis for the first neurofeedback visit. EEG 

acquired during an rtfMRI-nf procedure allows investigation of electrophysiological correlates of the rtfMRI-nf 

training [17]. Frontal EEG asymmetry (FEA) at rest has been shown to inversely correlate with PTSD severity 

[50]. FEA changes during emotional stimuli have been shown to reflect PTSD patients’ response to CBT 

treatment [51]. We hypothesized that temporal correlation between frontal EEG asymmetry and BOLD activity 

of the amygdala would be enhanced during the rtfMRI-nf task compared to a control task. In addition, we 

expected that FEA changes during a happy emotion induction task with rtfMRI-nf targeting the left amygdala 

(LA) [11,17] provide information about the PTSD patients’ individual response to the emotion regulation 

training. Our analysis confirmed this hypothesis and provided new insights into functional deficiencies in PTSD. 

B. Methods  

Twenty male patients with combat-related PTSD have completed this ongoing study in the experimental group. 

The study included 8 sessions (Fig. A1, in section A above): an initial psychological assessment, an initial 
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Clinician-Administered PTSD Scale (CAPS) evaluation, an MRI session with an emotional Stroop task, three 

rtfMRI-nf training sessions with simultaneous EEG, a repeat MRI session, and a final CAPS evaluation.  

Out of a cohort of 20 subjects used for these analyses, 15 completed training and have CAPS change scores. 

Severity of co-morbid depression was assessed using the Hamilton Depression Rating Scale (HDRS). Other 

experimental details are included in Study overview in section A above. The EEG-fMRI correlation analysis 

was performed as described in detail in [17]. 

To estimate FEA changes during training 

conditions (Happy, Count, Rest, Fig. A1, in 

section A above), time-frequency analysis 

was conducted using a continuous wavelet 

transform. The upper alpha EEG band was 

defined for each subject as [IAF...IAF+2] Hz, 

where IAF is the individual alpha peak 

frequency. Frontal EEG asymmetry was 

defined as either ln(P(F4))−ln(P(F3)) or 

ln(P(F8))−ln(P(F7)), where P is EEG power in 

the upper alpha band. The time course of 

frontal EEG asymmetry was used to define 

two terms for the psychophysiological 

interaction (PPI) analysis: correlation and 

interaction. 

 The [EEG-asymmetry-based regressor] × [Happy−Count] interaction term described the difference in temporal 

correlations of the frontal EEG asymmetry (convolved with the HRF) and B OLD activity between the Happy 

and Count conditions. The PPI 

analysis was conducted within the 

GLM framework for all brain 

voxels [17]. 

 

B. Results  

The PPI interaction effect for the 

frontal EEG asymmetry 

ln(P(F4))−ln(P(F3)), averaged 

within the LA ROI (Fig. B1A), was 

positive and significant for the last 

rtfMRI-nf run (R3) and exhibited a 

significant linear trend across the 

nf runs. This means that temporal 

correlation between the frontal 

EEG asymmetry and the LA 

BOLD activity was significantly 

enhanced during the Happy 

condition with rtfMRI-nf compared 

to the Count condition. Similar PPI 

effects were observed for the 

ln(P(F8)) −ln(P(F7)) asymmetry (Fig. B1B).  

Figure B1. Enhancement in temporal correlation between frontal EEG 
asymmetry and BOLD activity of the left amygdala (LA) during the 
rtfMRI-nf training. A) Average PPI coefficients for the LA ROI 
corresponding to frontal EEG asymmetry ln(P(F4))−ln(P(F3)). B) Average 
PPI coefficients corresponding to frontal EEG asymmetry 
ln(P(F8))−ln(P(F7)). See [1]. 

Figure B2. Group statistical map of the PPI interaction effect corresponding to frontal 
EEG asymmetry ln(P(F8))−ln(P(F7)). The green crosshairs mark the center of the LA 
target ROI. The green arrows point to regions (LOFC and rACC) for which the PPI 
interaction effects in PTSD are substantially weaker than in MDD. See [17]. 
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The whole-brain PPI interaction map (Fig. B2) is generally consistent with the PPI interaction map reported 

previously for MDD patients [17]. However, the PPI interaction effect is considerably weaker (Fig. B2) for the 

left lateral orbitofrontal cortex (LOFC) and the left rostral anterior cingulate cortex (rACC).  

Session-to-session variations in the average 

(across four rtfMRI-nf runs) individual Happy vs 

Rest FEA changes significantly correlated with the 

corresponding variations in CAPS ratings (Fig. 

B3A) and HDRS ratings (Fig. B3B). Our 

interpretation of these results is illustrated in Fig. 

B3C. A multiple regression analysis for ∆FEA vs 

∆CAPS and ∆HDRS showed a significant main 

effect (F(2,12)=14.7, p<0.001). Partial correlation 

∆FEA vs ∆CAPS controlling for ∆HDRS: 

r(12)=0.71, p<0.004. Partial correlation ∆FEA vs 

∆HDRS controlling for ∆CAPS: r(12)=0.58, 

p<0.031. 

B. Discussion 

Our results demonstrated that frontal EEG asymmetry provides relevant information about the participants’ 

emotional/motivational states during the rtfMRI-nf training not only in MDD [17], but also in PTSD. The average 

individual FEA changes during the rtfMRI-nf task are sensitive to severity of PTSD symptoms. Frontal EEG 

asymmetry can be used to indirectly probe activity of the amygdala and the related network by means of EEG. 

The weak PPI interaction effects for the LOFC and rACC (Fig. B2) can be attributed to the fact that activities of 

these regions are strongly affected by PTSD symptoms. The session-to-session variations in the FEA changes 

provide a measure of an individual response to emotion regulation training, reflecting reduction in both PTSD 

severity (CAPS) and co-morbid depression severity (HDRS). The partial correlation analyses suggest that 

variations in CAPS ratings and variations in HDRS ratings have essentially independent effects on the 

observed variations in the FEA changes. Our results indicated that the FEA variations associated with the 

rtfMRI-nf training can serve as a measure of treatment response in PTSD, and serves as good candidate for 

the neurofeedback signal for EEG only neurofeedback training. 

 
C) Individual differences in the effect of the real-time fMRI amygdala neurofeedback emotional training 

in combat-related PTSD 

 
C. Introduction 

In this analysis, we addressed individual differences in the left amygdala (LA) rtfMRI-nf training effect to 

elucidate the critical factors of training success and treatment effect. Investigating such individual differences 

should help to classify patients who are responsive to the rtfMRI-nf treatment and those who are not, which is 

necessary to develop effective individualized treatment. 

 

C. Methods 

This analysis included thirty-six male combat Veterans with PTSD (age 21-48, mean=32, SD=7 years) 

participated in three rtfMRI-nf neurofeedback training sessions (see Study overview, section A for details). 

Three subjects and four subjects dropped out at the second and the third session, respectively. Each session 

Figure B3. A) Reduction in 
average Happy vs Rest FEA 
changes between 3rd and 
1st rtfMRI-nf sessions vs 
reduction in CAPS. B) 
Reduction in FEA changes 
vs reduction in HDRS. C) 
Interpretation of results. 
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was separated by an 11-day interval on average. Participants were randomly divided into active (N=25) and 

sham (N=11) feedback groups. 

Functional images were processed with the Analysis of Functional NeuroImages (AFNI, 

https://afni.nimh.nih.gov/) software package. Pre-processing included physiological noise correction 

(RETROICOR/RVT regression), slice-timing correction, head motion alignment, normalization to MNI152 

template brain with Advanced Normalization Tools (ANTs, http://stnava.github.io/ANTs/), smoothing with 6mm-

FWHM Gaussian kernel, and scaling to percent change. Further noise reduction was applied in a general 

linear model (GLM) analysis by regressing out three principal components of ventricle signals, local white 

matter average signal (ANATICOR), motion parameters and their temporal derivative, and 4th-order 

polynomial for modeling slow signal fluctuations. The GLM analysis also included regressors of happy and 

count blocks (box-car time course convolved with hemodynamic response function), respectively, and event-

related response at onset of every block. No significant difference in mean age or mean head motion between 

groups was observed for the analyzed subjects. 

LA response during the happy block was extracted by beta-value of the fitted happy block regressor in the 

GLM analysis. Group analysis was performed with linear mixed-effect model (LME) analysis to examining the 

effects of training runs (continuous values of 0 to 3 for Practice, Run 1, Run 2, and Run 3, respectively), 

sessions (factor variable of #1, #2 and #3), and groups (active, sham) on happy block response in LA ROI. The 

statistical analyses were performed with R Statistical Computing Language and Environment. We also 

performed LME analysis for all voxels in the brain to investigate the rtfMRI-nf training effect in the whole brain. 

The whole-brain statistical map was thresholded with p<0.001 voxel-wise, then with cluster-size corrected 

p<0.01. Cluster-extent threshold was evaluated with improved autocorrelation function of spatial smoothness 

of fMRI signals [54]. 

 

C. Results  

The LME analysis showed no significant effect of the run (p=0.108) and the session (p=0.790). The training 

slope analysis, which has been introduced in section A above and reported previously [17], indicated that LA 

response trend across runs was correlated with baseline LA response (at Practice run in the feedback session 

#1). Fig. C1 shows the correlation between the baseline signal and training slope across runs in each session. 

The plot indicates a negative correlation between the baseline LA signal and slope of LA signal across training 

runs. We confirmed this association by performing LME analysis with the additional fixed effect of baseline LA 

signal. The analysis showed significant main effect of baseline signal (p=0.004). 

Figure C1. Correlations between baseline amygdala signal and training slope [17]
 
across runs in each training session. 
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We further examined the relationship between the individual variability of training effect and baseline 

symptoms and symptom change after the sessions. Baseline LA response was not correlated with any 

baseline symptom score. Training slope in LA signal was negatively correlated with baseline CAPS subscale C 

(avoidance and numbing symptoms). For symptom change, however, no significant correlation with LA 

baseline signal or training slope was found. 

The whole brain analysis by LME revealed significant training effect at bilateral anterior insula, the precentral, 

and the postcentral regions, as 

well as the right ventrolateral 

prefrontal, the right medial 

dorsal frontal, anterior 

cingulate cortex (ACC), the 

right supramarginal, and the 

right inferior temporal regions. 

A significant training effect was 

also seen in the left prefrontal 

area (Fig. C2). These regions 

showed decreased response 

across training runs. The 

decrease in the ACC response 

was significantly correlated 

with a decrease in CAPS total 

score (p=0.035 for PTSD-

active and p=0.089 for PTSD-

sham, Fig.C3) and CAPS C 

subscale (avoidance and 

numbing) symptom (p=0.030 

for PTSD-active and p=0.063 

for PTSD-sham, Fig.C3). 

 

C. Discussion 

Training in self-regulating LA 

activity during positive 

autobiographical memory recall 

with rtfMRI-nf was effective to 

reduce symptoms of PTSD 

group. While rtfMRI-nf training could increase LA response, there was no consistent increasing trend across 

multiple runs and sessions. We found, however, that LA response trend associated with baseline LA response. 

This individual variability might be due to ceiling LA activation for some PTSD patients. In contrast, while it has 

been indicated in MDD that patients have hypoactive LA activity to positively valenced stimuli compared to 

healthy controls [55], hyperactive amygdala has been reported for PTSD in emotional tasks [48] and in resting-

state [56]. This suggests the current treatment strategy with rtfMRI-nf to increase LA activity was most effective 

for subtypes of PTSD patients with hypoactive amygdala response to positive memory recall. 

 

Figure C2. Regions with significant main effect of run in the LME analysis – the whole 
brain analysis. 
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While the baseline LA activity could predict the training effect, symptom relief after the sessions was not 

associated with LA activity change. This suggests that symptom reduction might not be directly mediated by LA 

activity modulation, but by other regions that are co-modulated during the training. In the whole-brain analysis 

we found significant training effect across runs and sessions in the salience network regions including anterior 

insula and anterior cingulate cortex (ACC), whose response decreased across training. Furthermore, there was 

a significant association between PTSD symptom reduction and the decrease in the ACC response. These 

indicate that rtfMRI-nf training effect was not limited to the feedback target region (i.e. LA), but the training 

could affect other brain regions. The result suggests that the observed PTSD symptom reduction could be 

mediated by the co-activated brain regions (i.e. ACC). 

 

D) Connectome-wide investigation of altered resting-state functional connectivity in war Veterans with 

and without PTSD 

 
D. Introduction 
Altered resting-state functional connectivity in PTSD suggests neuropathology of the disorder. While seed-

based fMRI connectivity analysis is often used for the studies, such analysis requires defining a seed location a 

priori, which restricts search scope and could bias findings toward presupposed areas. Recently, a 

comprehensive exploratory voxel-wise connectivity analysis, the connectome-wide association approach, has 

been introduced using multivariate distance matrix regression (MDMR) for resting-state functional connectivity 

analysis [58]. The current analysis performed a connectome-wide investigation of resting-state functional 

connectivity for combat Veterans with and without PTSD compared to non-trauma-exposed healthy controls 

using MDMR. 

D. Methods 

Thirty-nine male combat Veterans with PTSD and 22 male combat Veterans without PTSD (Veterans control, 

VC) participated in the resting-state fMRI. In addition, 28 age-matched non-trauma-exposed healthy males who 

had participated in another study [59] were employed as non-trauma-exposed healthy controls (NC). Four 

PTSD and 4 VC participants were excluded from the analysis due to excessive head motion (more than 40 

censored time points). There was no significant age difference between the groups. 

The resting-state session took place prior to any task sessions. During the resting-state fMRI, participants were 

instructed not to move and to relax and rest while looking at a fixation cross on the screen. A single-shot 

gradient-recalled echo-planner imaging (EPI) sequence with sensitivity encoding (SENSE) was used for fMRI. 

The resting fMRI run time was 6 min 50 s (205 volumes). 

AFNI was used for fMRI image processing. Physiological noise reduction with RETROICOR/RVT, slice-timing 

and motion correction, nonlinear warping to the MNI template brain with the Advanced Normalization Tools 

(ANTs) software (http://stnava.github.io/ANTs/), spatial smoothing (4mm-FWHM), and scaling to percent 

change were applied to resting-state fMRI data. Noise in signal time-course was removed by regressing out 

three principal components of ventricle signal, local white matter average signal (ANATICOR), motion 

parameters, and low-frequency fluctuation and censoring volumes with large head motion. 

MDMR analysis was applied to investigate connectome-wide resting-state connectivity alteration between 

PTSD, VC, and NC groups. We followed the procedure introduced in Shehzad et al. (2014)[48] for the MDMR 

analysis. In each voxel, a connectivity map from that voxel to all other voxels was made with Pearson’s 

correlations between signal time-courses of the voxels. The dependent variable of MDMR is a distance matrix 

of the connectivity maps between subjects. The distance of the maps between subjects was calculated with 

Euclidean distance of Fisher’s z-transformed connectivity maps. The MDMR analysis evaluates the association 
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between the distance matrix (dissimilarities of connectivity maps across subjects) and the predictor variables in 

the design matrix. The design matrix included two columns of group factors for PTSD and VC as well as 

columns of age and motion size as nuisance variables as well as all 1s for the intercept. Statistical tests were 

performed with a 10,000-repetition permutation test. MDMR statistical map indicates that a whole-brain 

connectivity pattern at a voxel is altered between the groups. However, it does not show which specific 

connectivity is altered. To elucidate which voxel-by-voxel connectivity was altered between the groups, post-

hoc seed-based connectivity analysis was performed for the significant regions of the MDMR statistical map. 

D. Results 

Figure D1 shows the thresholded map for the main effect of group in the MDMR analysis (cluster-size p<0.05). 

Peak locations of the clusters with significant effect (cluster-size p<.05) were used as seeds for post-hoc seed-

based connectivity analysis. Post-hoc analysis revealed significantly altered connectivity for PTSD compared 

to NC. Those included decreased connectivity between the left parahippocampal seed and the bilateral 

fusiform gyrus, middle occipital, middle temporal, and the posterior cingulate areas. Decreased connectivity for 

PTSD was also seen between the left medial frontal (supplementary motor area; SMA) seed and the anterior 

cingulate and the left anterior insula regions. Multiple left lateral prefrontal seeds also showed decreased 

connectivity for PTSD with salience network (SN) regions. 

 

Increased functional connectivity for PTSD was seen between the left insula seed and the right middle 

cingulate region. Connectivity between the right parahippocampal seed and the right anterior insula was 

negatively correlated with CAPS and PCL-M. Connectivity between the ventromedial prefrontal cortex 

(vmPFC) seed and the left middle frontal region was negatively correlated with CAPS scores. 

The VC group also had significantly altered connectivity compared to NC. Those included decreased 

connectivity between the left superior frontal seed and the posterior default mode network areas, between the 

left middle frontal seed and the left postcentral region, between the right transverse temporal seed and the 

precuneus, and between the left superior temporal seed and the precuneus. Significantly increased 

connectivity in VC was seen between the left posterior insula seed and the right posterior insula, right lingual, 
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and right cuneus regions and between the left posterior insula and the right postcentral, right middle frontal, 

right middle temporal, right posterior cingulate, left superior parietal, right inferior frontal, right precuneus, and 

right thalamus. No significant connectivity differences between the PTSD and VC groups were found in the 

post-hoc analysis. 

D. Discussion 

The decreased connectivity between the lateral prefrontal regions and the salience network regions in PTSD 

was consistent with previous reports that indicated lowered emotion-regulation function in these regions. The 

decreased connectivity between the parahippocampal gyrus and visual cortex supported the dual 

representation theory of PTSD, which suggests dissociation between sensory and contextual memory 

representations in PTSD. The theory also supposes that the precuneus is a region that triggers retrieval of 

sensory memory of traumatic events. The decreased connectivity at the precuneus for VC might be associated 

with suppressing such a process. The current results did not show significant differences between the PTSD 

and VC groups. We note that this result does not necessarily indicate that PTSD and VC groups had the same 

connectivity patterns but limited sensitivity of MDMR analysis could affect the non-significant result. 

 

E) Real-time fMRI amygdala neurofeedback positive emotional training normalized resting-state 

functional connectivity in combat Veterans with and without PTSD: a connectome-wide investigation 

E. Introduction 

The effect of neurofeedback training on resting-state functional connectivity warrants investigation as changes 

in spontaneous brain activation could reflect the association between sustained symptom relief and brain 

alteration. We have identified abnormal PTSD connectivity at the baseline session by a data-driven, 

connectome-wide approach using a multivariate distance matrix regression (MDMR) analysis [58] (section D). 

The current study examined the real-time fMRI neurofeedback (rtfMRI-nf) training effect on these abnormal 

connectivities using longitudinal linear mixed-effect model analysis. In addition, a longitudinal MDMR analysis 

was performed to examine connectome-wide neurofeedback training effects beyond those associated with 

effects on abnormal baseline connectivity. 

E. Methods 
Thirty PTSD and 17 VC participants completed 3 sessions of rtfMRI-nf training and the post-training resting-

state scan session. PTSD participants were randomly assigned to the experimental group (PTSD-exp) where 

they received left amygdala rtfMRI-nf (N=21) or to the control group (PTSD-ctrl) where they received rtfMRI-nf 

from the left horizontal segment of the intraparietal sulcus (N=9). All VC participants were in the experimental 

group (VC-exp). Participants with excessive head motion (more than 40 censored volumes) were excluded 

from the analysis. Three PTSD and three VC participants who completed the post-training-session were 

excluded from the analysis. 

We examined the changes in the abnormal connectivity identified in the previous connectome-wide analysis. 

The same resting-state fMRI protocol and image processing as in the previous analysis were used. The rtfMRI-

nf training effect was examined by linear mixed-effect (LME) model analysis for longitudinal design. The LME 

model included fixed effects of session (baseline, post-training), group (PTSD-exp, PTSD-ctrl, VC-exp), 

session by group interaction, age, and motion size and a random effect of the subject on intercept. This 

analysis was done for the abnormal connectivity identified in the baseline analysis as well as for the left 

amygdala (LA) connectivity. We also performed a longitudinal MDMR analysis for a comprehensive 

investigation of the training effect that was not limited to the abnormal connectivity at baseline. The longitudinal 

MDMR included the connectivity maps before and after the training for each subject. The distance matrix of 

these maps was the dependent variable in the MDMR. This design matrix included session, group (PTSD-exp, 
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PTSD-ctrl, VC-exp), session by group interaction, age, and motion size. In addition, subject-wise factor 

variables were included in the design matrix. These regressors had 1 at a pair of a same subject’s samples 

and 0 for the others. This could regress out subject-wise average effect, so that the longitudinal analysis could 

find the session and the group effect on within-subject connectivity difference. 

 
E. Results 

The PTSD group had significantly lower 

connectivity between the left amygdala 

and the left ventrolateral prefrontal cortex 

(vlPFC) than the NC group at baseline 

(Fig. E1). This connectivity was 

significantly increased after the training 

only for the PTSD-exp group 

(t(29)=2.554, corrected p=0.047). This 

connectivity change, however, was not 

significantly associated with symptom 

change. Abnormal resting-state 

connectivity for combat Veterans with and 

without PTSD was normalized after the 

training. Hypoconnectivity between the 

supplementary motor area (SMA) and the 

dorsal anterior cingulate cortex (dACC) in 

the PTSD group compared 

to the NC group at baseline 

was significantly increased 

after training only for the 

PTSD-exp group 

(t(29)=2.770, corrected 

p=0.028), and this 

connectivity increase was 

significantly associated with 

a decrease of PCL-M in the 

PTSD-exp group (Fig. E2, 

right plot, t(15)=-3.092, 

corrected p=0.007). 

Hypoconnectivity between 

the left superior frontal 

region and the precuneus 

and the supramarginal gyrus 

in the VC group compared to 

the NC group at baseline was significantly increased after training only for the VC-exp group (t(29)=3.518, 

corrected p=0.004). The hyperconnectivity in bilateral insula regions for the VC was significantly decreased 

after training for the VC-exp group. Training effect on resting-state functional connectivity identified with 

longitudinal MDMR analysis is shown on Fig. E2. Longitudinal MDMR analysis revealed a connectivity change 
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between the precuneus and the left superior frontal cortex (Fig. E2). The increase of this connectivity was 

associated with a decrease in hyperarousal symptoms (CAPS Criterion D subscale). 

E. Discussion 
Comprehensive investigation of training effects on resting-state functional connectivity revealed that changes 

in connectivity were observed in left amygdala connectivity as well as in the SMA, ACC, insula, precuneus, and 

prefrontal regions. These changes were in the direction of normalizing abnormal connectivity for both PTSD 

and VC groups. Connectivity increases between the SMA and the dACC and between the precuneus and the 

left superior frontal gyrus were associated with decreases in PTSD symptoms measured by PCL-M and CAPS 

sub-D, respectively. These results indicated that the rtfMRI-nf training effect was not limited to a feedback 

target region and symptom relief could be mediated by brain modulation in several regions other than a 

feedback target area. 

The connectivity changes observed in this study might involve correcting emotion representation and memory 

retrieval. Such an effect could be promoted by positive emotion enhancement training rather than suppressing 

or reappraising negative emotions. Ellard et al. (2017) [60] indicated that amygdala-vlPFC connectivity was 

increased during emotion acceptance and decreased during emotion suppression among people with anxiety 

disorders. They also showed that dACC activation was increased during emotion acceptance. Many rtfMRI-nf 

treatment studies have focused on suppressing abnormal activity. However, promoting positive emotional 

experience might help correct abnormal emotion representation and could have the same, if not more of, a 

therapeutic effect in treating the biological underpinnings of dysregulated emotion and mood disorder 

symptoms.  

 

F) Real-time fMRI amygdala neurofeedback training lowers PTSD symptoms with hippocampus volume 

increase 

F. Introduction 

Emerging evidence suggests the utility of real-time fMRI neurofeedback (rtfMRI-nf) in symptom reduction due 

to normalizing aberrant functional and resting-state brain activations. However, its effect on brain structure is 

not clear. This study examined the rtfMRI-nf training effects on anatomical brain structures in a cohort of 

combat Veterans with posttraumatic stress disorder (PTSD). Participants underwent rtfMRI-nf training to 

increase left amygdala (LA) activity during positive autobiographical memory recall. We focused on the 

changes in hippocampus volume because hippocampus structural abnormalities are frequently reported in 

PTSD [61]. We hypothesized that LA rtfMRI-nf training during positive memory recall could affect hippocampus 

volume, and that volume changes would be associated with PTSD symptom reduction. 

F. Methods 
Thirty combat Veterans with PTSD completed three sessions of rtfMRI-nf emotional training and the pre- and 

post-training anatomical MRI scans. The participants were randomly divided into an experimental group 

(PTSD-exp, N=21), who received a neurofeedback (nf) signal from the LA and a control group (PTSD-ctrl, 

N=9), who received nf signal from a brain region (the left horizontal segment of the intraparietal sulcus) 

putatively not involved in processing emotions. Participants were instructed to retrieve positive 

autobiographical memories while attempting to increase the nf signal presented on a screen. 

Structural T1-weighted MRI (MPRAGE) scans were performed about one week before and after the rtfMRI-nf 

visits. The following parameters were used: FOV = 240×192 mm, matrix = 256×256, 120 axial slices, slice 

thickness = 0.9 mm, 0.9375×0.9375×0.9 mm3 voxel volume, TR = 5 ms, TE = 2.0 ms, R = 2, flip angle = 8°, 

delay time = 1400 ms, inversion time = 725 ms, sampling bandwidth = 31.2 kHz, scan time = 5 min 40 s. The 
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mean interval between the pre- and post-training structural scans was 42 days (SD=12 days). PTSD 

symptoms were measured with the Clinician-Administered PTSD Scale (CAPS) for DSM-IV [62] about one 

week before and after the structural MRI scan. 

FreeSurfer 6.0 (http://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferWiki) was used to process MRI images. 

The longitudinal processing pipeline [63] was used and volumes in the hippocampus and its subfields [64] were 

evaluated. Linear mixed-effect model (LME) analysis was used to test fixed effects of sessions (pre, post), 

group (PTSD-exp, PTSD-ctrl), laterality (left, right), and their interactions as well as age and estimated total 

intracranial volume (eTIV) as covariates. Power-proportion correction [65] was applied to the eTIV covariate. 

Random effect of subject on intercept was included in the model. We also performed LME analysis for the 

changes in volumes with fixed effects of group, symptom change, laterality, their interactions, age, and eTIV, 

and a random effect of subject on intercept. 

F. Results 

PTSD symptom significantly 

decreased after the training only for 

the PTSD-exp group (with 

significant session effect on CAPS 

total score in PTSD-exp group 

t[21]=3.816, p=0.002; and no 

significant effect in PTSD-ctrl group 

t[21]=1.770, p=0.172). No 

significant effect of the session and 

its interaction were found on 

hippocampal volumes when no 

symptom change was included in 

the analysis. When the change in 

CAPS score was included in the 

model, the PTSD-exp group 

showed a significant association 

between the symptom change and volume change in the CA1 (F[1,19]=5.4991, p=0.030) and the 

parasubiculum (F[1,19]=7.724, p=0.012) hippocampus regions (Fig. F1). 

F. Discussion 

rtfMRI-nf training to increase left amygdala activity during positive memory recall had a significant treatment 

effect to reduce PTSD symptoms. This symptom reduction was positively associated with the hippocampus 

volume increase, specifically in the CA1 and the parasubiculum regions, such that participants with a greater 

decrease in PTSD symptoms had more increase in the volumes. While smaller hippocampus volume has been 

reported for PTSD [61], the current result suggests that rtfMRI-nf LA emotional training provides PTSD 

symptom relief and recovers such atrophy. 

 

G) Effects of rtfMRI amygdala neurofeedback on anxious reactivity to individualized reminders of a 

traumatic event 

G. Introduction 
The amygdala is thought to play a key role in both identifying salient cues in the environment (such as 

reminders of a traumatic event) and regulating emotional responses to those cues [66,67]. Accordingly, we 

continue to examine the hypothesis that people with PTSD receiving the rtfMRI-nf training will evidence a 
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greater reduction in emotional reactivity to traumatic event-specific stimuli presented via the well-established 

script-driven imagery paradigm (outside the MRI environment) compared to people with PTSD who receive 

sham feedback. This hypothesis is based on data from other laboratories and on our preliminary data 

demonstrating that amygdala hyperresponsivity in PTSD arises during the presentation of either traumatic 

stimuli or trauma-unrelated negatively-valenced stimuli, relative to neutral stimuli [66-73]. 

G. Methods  

Forty-six male combat Veterans, 29 with PTSD (age 21–48) and 17 without PTSD (Veterans control, VC; age 

22–55) completed the script-driven imagery procedure [73]. Of Veterans with PTSD, 20 completed the rtfMRI 

procedure with neurofeedback about amygdala activity (EX) and 9 completed the procedure with feedback 

provided from the intraparietal region (SHAM). Participants first worked with a trained experimenter to develop 

an individualized, 30-sec script that described their worst combat experience from the first-person perspective. 

A researcher then audio-recorded the script and presented the participant with the script outside of the scanner 

environment twice; once before and once after the rtfMRI procedure. Participants rated state levels of anxiety 

after each traumatic event script presentation using a 0 (none) to 10 (extreme) scale. In order to examine 

changes in anxious reactivity to the script-driven imagery procedure as a function of rtfMRI training, a repeated 

measures ANOVA was conducted with group (EX, SHAM, VC) entered as a fixed factor and post-script ratings 

made before and after the rtfMRI training 

entered as the repeated measure.  

G. Results  

Results indicated that the hypothesized group 

by anxiety rating interaction was trending 

toward statistical significance [Wilks Lambda = 

0.915, F(2, 43) = 2.01, p = 0.14, partial 2 = 

0.085]. Fig. G1 illustrates the pattern of anxiety 

ratings as a function of group and script. 

To more specifically examine anxious 

reactivity among participants with PTSD, an 

ANCOVA was conducted comparing the EX 

and SHAM groups with pre-rtfMRI anxiety 

ratings entered as a covariate and post-rtfMRI 

ratings entered as a dependent variable.  

Here, after accounting for significant variance 

associated with pre-rtfMRI training anxiety 

ratings [F(1, 26) = 58.08, p < 0.001, partial 2 = 0.691], the difference in post-training anxiety ratings between 

the EX (m = 4.40, SD = 2.23) and SHAM (m = 5.44, SD = 2.78) groups was trending toward statistical 

significance [F(1, 26) = 3.36, p = 0.078, partial 2 = 0.115]. 

G. Discussion  

Results regarding the effects of the rtfMRI procedure on anxious reactivity to individualized traumatic event 

cues remain promising yet did not reach statistical significance. However, trends in the data are encouraging. 

Examination of Fig. G1 suggests that both experimental groups completing amygdala-focused training reported 

a decrease in anxiety elicited by the script procedure after completing the neurofeedback training, whereas 

participants completing the procedure with sham feedback reported an increase an anxiety. Given the 

relatively small sample size for detecting effects of an experimental manipulation on self-reported emotional 
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reactivity, these results suggest the amygdala-focused rtfMRI-nf procedure may indeed hold promise for 

reducing a key feature of PTSD: exaggerated emotional reactivity to traumatic event cues.  

 

H) Tracking Resting State Connectivity Dynamics in Veterans with PTSD 

H. Introduction  

Resting state functional connectivity (RSFC) refers to correlations in hemodynamic activity levels among 

different brain regions, suggesting synchronization of neural activation of those regions during rest [74]. The 

activities of the resting brain, measured by blood-oxygenation-level-dependent (BOLD) functional magnetic 

resonance imaging (fMRI), reveals spontaneous and low-frequency (<0.1Hz) fluctuations that are temporally 

correlated and spatially organized into functional networks, collectively termed the “resting state networks” 

(RSNs) [75,76]. The alterations in two specific networks may underlie PTSD: the default mode network (DMN) 

[77-82], and the salience network (SN) [83,84]. Most studies examining integrity of network connectivity 

associated with PTSD have focused on civilian trauma; however, less is known about the effect of combat-

related trauma. To date, only a few studies have examined network-level alternations in combat-related PTSD 

yet the findings have been elusive. Conflicting results of these studies have largely depended on the selection 

of a control group. Alterations in resting state networks, or connectivity, have been reported in PTSD compared 

to non-trauma-exposed controls [83], or a combination of trauma-exposed and non-trauma-exposed controls 

[85,86]. Combining both combat-exposed and civilian healthy controls obfuscates understanding if PTSD-

related differences are specific to PTSD or due to combat exposure or even being in the military more 

generally. In this regard, a study by [87] examined details in three groups, i.e. Veterans with combat-related 

PTSD, combat-exposed controls without PTSD and never-traumatized healthy controls, and compared their 

resting state functional connectivity. Differences associated with PTSD were only observed in comparison with 

the civilian control, but not in comparison with combat-exposed Veterans. Thus, it remains unclear whether 

abnormality of resting state networks is best attributed to military status, combat exposure, or PTSD.  

The goal of the current study was to test whether RSFC differs between combat-exposed Veterans with, as 

compared to without, PTSD. This method allows for ruling out the effects of being in the military generally, and 

combat exposure specifically. We employed a novel multimodal imaging approach using simultaneous 

electroencephalography (EEG) and fMRI to study activity in the resting state networks. The measurement of 

neural activity via fMRI, as done in prior work, is relatively limited in terms of understanding temporal dynamics 

of neural activity because the BOLD signal relies on a relatively slow hemodynamic response. In contrast, EEG 

is much more sensitive to the temporal dynamics of neural activity because it captures fast neuronal events 

that evolve on the scale of milliseconds. Neuroimaging with integrated and combined EEG-fMRI has been 

suggested to offer new insights in the study of functional connectivity because it offers both high spatial 

resolution of fMRI and the high temporal resolution of EEG [88]. To examine resting state network activity, a 

new method by Yuan et al. 2012 [89] has demonstrated that temporal independent EEG microstates (EEG-ms) 

can be obtained from resting state EEG acquired concurrently with fMRI. It was further showed that EEG-ms 

form direct electrophysiological signatures to the canonical resting state networks measured by resting state 

fMRI in both spatial and temporal domains [89,90]. This study examined EEG-ms associated with the resting 

state networks of relevance to PTSD — default mode network and the salience network. We proposed a new 

strategy to quantify the fast temporal dynamics of DMN, and SN functional connectivity in terms of EEG-ms 

occurrence rate. We hypothesized to observe abnormalities in the electrophysiological signatures of the two 

resting state networks, default-mode network and salience network, between the PTSD group and the combat 

control group. 
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H. Methods  

Simultaneous EEG and fMRI data were from 36 Veterans with combat-related PTSD and 20 combat-exposed 

Veterans (combat-exposed controls, CEC) with eyes open in a resting state. Demographic and clinical 

characteristics are shown in Table H1. 

 

Table H1.  
Participants demographics  
and clinical characteristics 

PTSD 
(n=36) 

CEC 
(n=20) 

Age (Mean ± SD Years) 32.0 ± 7.0 34.0 ± 9.0 

PCL-M(Mean ± SD) *** 42.9 ± 14.6 18.3 ± 2.2 

CAPS(Mean ± SD) *** 54.0 ± 18.5  4.7 ± 5.1 

HARS (Mean ± SD) *** 15.3 ± 6.2  2.6 ± 3.5 

SHAPS(Mean ± SD) *** 29.9 ± 5.7 23.5 ± 5.8 

HDRS (Mean ± SD) *** 14.3 ± 5.6  2.6 ± 3.7 

MADRS (Mean ± SD)*** 17.2 ± 8.2  2.1±3.8 

*** significant difference between PTSD and CEC groups at p<0.001 
Abbreviations: PTSD: post-traumatic stress disorder; CEC: combat exposed controls; CAPS: Clinician 
Administered PTSD Scale; PCL-M: the PTSD checklist, military version. HARS: Hamilton Anxiety Rating Scale; 
HDRS: Hamilton depression rating scale; SHAPS: Snaith-Hamilton pleasure scale; MADRS: Montgomery-
Asberg depression rating scale; SD: standard deviation. 
 
BOLD fMRI RSNs were derived from preprocessed imaging data using spatial independent component 

analysis (ICA) separately for PTSD and CEC groups. The default mode network, anterior salience network and 

posterior salience network were selected out of all RSNs by comparing to those reported in [91]. 

The difference between groups was assessed using a two-sample unpaired t test. After correcting the MRI and 

cardioballistic artifacts, temporal independent EEG microstates (EEG-ms) were derived using the method 

described in [89]. We have identified temporal independent EEG-ms for each participant, and then obtained 

CEC and PTSD group results. The DMN, SN-related EEG-ms were selected by choosing one EEG-ms of 

correlated time course with BOLD fMRI DMN and/or SNs. The complete time courses of DMN, SNs-related 

EEG-ms were obtained by back-projection and determined via a winner-take-all approach. The occurrence rate 

of DMN, SNs-related EEG-ms were calculated per each subject then compared across groups and against the 

clinical ratings. 

H. Results 

Figure H1 shows two sets of ten identified EEG microstates for both CEC (upper row), and PTSD (lower row) 

groups. Nine out of the ten microstates highly resemble those found in our previous study in [89]. A unique 
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microstate MS11 was identified in the current study, featuring a bilateral pattern with sources originated from 

the junction of posterior and temporal areas. 

As the dynamics of the temporal independent microstates were reconstructed from EEG time series, it allows 

us to examine their signatures at a millisecond time scale. Among these EEG-ms, three microstates 

demonstrated distinctive differences in their fast evolving dynamics. EEG-ms that differ across both patient 

groups are marked by dashed lines in Fig. H1. The occurring frequencies of these three microstates are 

significantly different between HC and PTSD groups. To further explore the neuronal substrates of these three 

signature microstates, the temporal dynamics of the microstates were compared with the time courses of 

BOLD signals after convolving with impulse hemodynamic response function.  

 

Regions where BOLD and EEG microstate time series are correlated were identified using a general linear 

model. The dorsal default model network (dDMN) was therefore identified associated with one of the EEG 

microstate, MS1 (Fig. H2). Importantly, the occurring frequency of the dDMN-associated EEG microstates 

shows distinctive temporal dynamics between CEC and PTSD groups (i.e., higher in the PTSD group). 

Moreover, the occurring frequency of the EEG-ms was also linearly related to the scores of PCL-M scores in 

the PTSD group, indicating that more severe PTSD symptoms are associated with faster dynamics of the DMN 

network. Two other microstates MS 10 and MS11, were also found to be associated with distinctive dynamics 

between PTSD and CEC groups. Interestingly, both MS10 and MS11 identified a similar insular network, 

including bilateral insular, the cingulate cortex and the medial temporal cortex. MS10 (Fig. H3) appears to 

engage the anterior salience network (SN) that includes the anterior insular, dorsal anterior 
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cingulate/paracingulate cortex, and the medial thalamus. By the way of comparison, MS11 (Fig. H4) is related 

to the posterior insular network that includes the posterior insular region and dorsal anterior cingulate cortex.  

However, the temporal dynamics of MS10 

and MS11 show importantly different 

characteristics. For MS11, the PTSD 

group showed significantly higher 

occurring frequency than the control 

group, whereas for microstate MS 10, the 

PTSD group showed lower occurring 

frequency. Furthermore, the dynamics of 

MS10 was found to negatively correlate 

with SHAPS scores across the individual 

subjects, which assess hedonic 

experience or positive valence. Therefore, 

in the PTSD group, participants with 

higher level of hedonic tone are 

associated with lower occurrence 

frequency of the anterior insular network. 

The dynamics of MS11 did not show any 

significant linear trend between the 

occurring frequency and the level of 

symptoms (p>0.05 for both PCL-M and 

SHAPS scores). 

H. Discussion 

We investigated and compared the 

electrophysiological signatures of hemodynamic RSNs in male Veterans with and without combat related 

PTSD. To our knowledge, this is the first examination of resting state networks in PTSD using a multimodal 

concurrent EEG-fMRI approach and also controls for combat exposure. We proposed a new strategy to 

integrate EEG and fMRI by quantifying the fast temporal dynamics associated with the resting state networks. 

Results show that in three fMRI derived resting state networks, namely DMN as well as anterior and posterior 

SNs networks, the temporal dynamics as characterized and measured by EEG, differ as a function of PTSD. 

The electrophysiological correlates – temporal independent EEG microstates associated with the DMN and 

anterior and posterior SNs - show aberrant occurrence frequency in PTSD. In particular, the occurring 

frequency of the DMN is higher in PTSD and positively correlated with the score of PTSD severity. In contrast, 

the occurring frequency of the anterior SN is lower in PTSD and negatively correlated with the score of hedonic 

tone or degree of pleasantness.  

Multiple brain regions have been depicted in the imaging studies of PTSD, as patterns of activations during 

tasks of symptom provocation. Hyperactivity of limbic brain regions (e.g., amygdala, insula) and the hypo-

activity of brain areas involved in emotional regulation (e.g., ventromedial prefrontal cortex (vmPFC), dorsal 

anterior cingulate cortex (dACC) were observed, suggesting insufficient top-down modulation of limbic regions 

(especially the amygdala) by the prefrontal cortex [4,92,93]. In addition, resting state fMRI imaging has gained 

recent interests in the investigation of the neurobiological mechanism of PTSD, as the disease manifests itself 

as re-experiencing of the traumatic events, accompanied by lasting symptom of avoidance and hyperarousal at 

resting state. While the activation patterns of the PTSD-implicated regions have been examined extensively in 
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the past, patterns of connectivity between these regions are also investigated, which could shed important new 

information on the neural basis of PTSD, and on mechanisms of PTSD symptom development. Results 

suggested increased occurrence frequency of DMN-related electrophysiological states in the Veterans with 

PTSD as compared to the Veteran controls. The EEG microstate MS1 was observed to be the 

electrophysiological correlates of regions including the precuneus, the medial prefrontal gyrus (MPFC) and the 

bilateral dorsal lateral PFC, which constitutes the key nodes of the DMN [94]. The precuneus is involved in 

autobiographical memory and is also related to self-referential processing [95-97]. Furthermore, precuneus 

activity has been related to trauma memory generalization [98], and flashbacks [99]. Thus, alterations in the 

precuneus are associated with PTSD and may potentially be related to altered memory- and self-referential 

processes, such as memory deficits, intrusions or flashbacks. These findings altogether suggest that the DMN 

is disturbed in PTSD. 

Our observation regarding increased DMN temporal dynamics is in line with previous task-based studies of 

PTSD patients which report increased connectivity within DMN-related regions [83]. An analysis of the whole 

brain RSFC network topology associated with combat-related PTSD revealed the abnormally increased 

connectivity of the precuneus within the DMN [85]. Furthermore, our investigation extended prior work by 

examining the DMN using a multimodal approach and showed increased temporal dynamics within the PTSD 

group. Moreover, the temporal dynamics in PTSD appear positively correlated with PTSD severity. As PTSD 

severity increased, the occurrence of electrophysiological states (e.g. EEG-ms) associated with the DMN were 

higher, suggesting a neuroimaging metric that has potential as a biomarker of symptom severity. 

The salience network [100] has also been another focus in the neuroimaging studies of PTSD. The SN 

consists of dorsal anterior cingulate (dACC) and orbital frontoinsular cortices with robust connectivity to 

subcortical and limbic structures. Further delineation of the salience network resulted in two sub-networks, the 

anterior SN and the posterior SN [91]. Studies of SN has suggested it plays in detecting and orienting to salient 

stimuli [101-102], emotional control [100], cognitive control [103], and error processing [104]. In particular, the 

intrinsic functional connectivity of the dACC node of the SN has been associated with anxiety ratings in the 

healthy population [100]. Alterations in the SN that is associated with PTSD, however, have been investigated 

in a limited number of studies. The insula and amygdala have been found to be hyperactive in PTSD [46,82] 

and are involved in the SN [101]. Reduced ACC resting state functional connectivity with the thalamus, 

amygdala, posterior cingulate cortex (PCC)/precuneus, and prefrontal regions has been reported in PTSD 

versus non-trauma-exposed controls [83,85], trauma-exposed controls [84,103] or both [85,86]. As discussed 

above, using a control group of non-trauma-exposed civilian or a combination of combat-exposed and non-

combat-exposed controls raises methodological concerns and limits the interpretation of the findings. 

Our results found distinct PTSD-related signatures for the anterior SN and the posterior SN. The microstate 

MS10 was observed to be the electrophysiological correlate of the anterior SN, which includes the anterior 

insular, dorsal anterior cingulate/paracingulate cortex, and the medial thalamus. In contrast, MS11 is related to 

the posterior insular network that includes the posterior insular region and dACC. The delineation of anterior 

and posterior SN has been documented in data-driven studies of resting-state fMRI data [91] and tractography-

based studies of diffusion tensor imaging data [103]. However, the functional relevance of the subnetworks of 

the SN is not yet clear. Our study compared the temporal dynamics of the EEG microstates associated with the 

anterior and posterior SN: decreased temporal dynamics in the anterior SN, yet increased dynamics in the 

posterior SN, were observed in PTSD. These results may suggest an antagonist relationship between the 

anterior and posterior SN in PTSD. More interestingly, the dynamics of the anterior SN is related to the hedonic 

tone of the participants. The PTSD group was found to have significantly higher hedonic tone than the controls, 

and correspondingly the PTSD participants show a significantly lower occurrence frequency EEG-ms 

associated with anterior SN. In line with the group-level finding, at an individual level, the higher the score of 
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hedonic tone is, the less frequently the anterior SN EEG-ms occurs. These results suggest that activity of the 

SN is disturbed in among people with PTSD while at rest, and are consistent with work documenting abnormal 

functioning of the emotion regulation network in this population. 

Moreover, the SN is thought to be critically involved in switching between exogenous and endogenous 

attentional states and regulating the balance between DMN and central-executive network (CEN) activity [104]. 

Therefore, in addition to being among the three most well-established intrinsically connected brain networks, 

the DMN, SN and CEN appear to be inherently related to (and interconnected with) one another. Our studies 

showed evidence supporting an orchestra relationship between DMN and SN, particularly in the domain of 

temporal dynamics. Whereas the temporal dynamics of DMN become more frequent in PTSD, the states of the 

anterior SN go on an opposite, diminishing direction. Interestingly, the exaggerated DMN dynamics are 

positively associated with the severity of PTSD symptoms whereas the diminishing states of the anterior SN 

are negatively associated with the hedonic tone across PTSD individuals. Moreover, the posterior SN has been 

also delineated in our findings, having an antagonistic role than the anterior SN. Although the states of the 

posterior SN show higher occurrence frequency in the PTSD than the CEC group, it remains still unclear about 

the functional underpinning of the posterior SN.  

In summary, this study showed differences in the default mode network, anterior and posterior salience 

networks, comparing Veterans with combat-related PTSD to combat-exposed Veteran controls without PTSD. 

The occurrence frequency of the EEG microstates associated with the default mode network was higher in 

PTSD than control, and positively associated with the severity of PTSD symptoms. The occurrence frequency 

of the electrophysiological state associated with the anterior salience network was lower in PTSD than control, 

and negatively associated with the hedonic tone in PTSD participants. Our findings contribute new information 

to our understanding neural mechanisms of PTSD, and further suggest that a disruption in emotion generation 

and regulation circuits play a crucial role and contribute to the pathophysiology of PTSD. 

 

I) EEG-only neurofeedback training feasibility in combat-related PTSD 

I. Introduction 

We have developed a stand-alone EEG-only neurofeedback (EEG-nf) training protocol for emotion-regulation 

training and applied it to Veterans with combat-related PTSD. The procedure design was based on the insights 

we gained from the experiments utilizing the rtfMRI-nf of the amygdala with simultaneous EEG recordings 

(Sections A-D). After conducting an exploratory data analysis on collected multimodal rtfMRI-nf and 

simultaneously recorded EEG data, we selected an EEG signal feature for stand-alone EEG neurofeedback 

experiments. The analysis revealed that variations in frontal upper alpha EEG asymmetry during the rtfMRI-nf 

amygdala regulation training as a promising measure of PTSD 

severity and treatment response, and therefore is a promising 

EEG-nf target (Section B). 

I. Methods 

The experimental setup for the EEG-nf training is shown in 

Figure I1. Hardware includes: i) main Linux workstation to control 

the entire procedure by means of a custom developed and 

integrated real-time software system; ii) windows laptop for 

collecting EEG and physiological data and sending those data in 

real-time to the main computer via a TCP/IP socket; ii) peripheral 

devices: 64-channel EEG system two BrainAmp MR plus 
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amplifiers from Brain Products, GmbH and a 64-channel EEG cap from EasyCap, a module for physiological 

GSR (galvanic skin response) and respiration measurements, utilizing a BrainAmp ExG amplifier with GSR 

and respiration belt sensors from Brain Products, GmbH, mechanical keyboard response device for ecStroop 

task, joystick for AAT, headphones and volume control for the script-driven imagery procedure [SDIP], and a 

mobile cart for performing the experimental 

tasks. The main computer received the EEG 

data and used them to generate the EEG-nf 

signal, which was displayed to a participant by 

a custom GUI software. All the EEG-nf 

equipment used was MR compatible, and the 

entire EEG-nf procedure could be performed 

during fMRI if needed. In addition, we 

implemented the ecStroop, SDIP, and AAT 

tasks in Python programing language and all 

tasks were integrated with controlling software 

running on the main Linux workstation.  

The experimental protocol for one EEG-nf 

session is illustrated in Figure I2. The protocol was very similar to the procedure we used previously for the 

rtfMRI-nf experiments targeting the left amygdala (Sections A-D). For EEG-nf, the red variable-height 

neurofeedback bar represented the difference in the target asymmetry (A) values between a current Happy 

Memories condition and the Rest baseline computed for the preceding 40-s long Rest condition block. In 

addition, the height of the EEG-nf bar was updated every 1 s.  

Figure I3: Phase 3 visit schedule. SCID=Structured Clinical Interview for DSM-IV, CAPS=Clinician-Administered PTSD 
Scale, TAS=Toronto Alexithymia Scale, ECS=Emotional Contagion Scale, BIS/BAS=Behavioral Inhibition 
System/Behavior Avoidance System, HAM-D=Hamilton Rating Scale for Depression, MADRS=Montgomery–Åsberg 
Depression Rating Scale, HAM-A=Hamilton Rating Scale for Anxiety, PCL-M=PTSD Checklist-Military Version, 
SHAPS=Snaith-Hamilton Pleasure Scale, BDI=Beck Depression Inventory, POMS=Profile of Mood States, VAS=Visual 
Analog Scales, ecStroop=Emotional Counting Stroop, SDIP=Script-Driven Imagery Procedure, AAT=Approach-Avoidance 
Task. 

The entire EEG-nf neurofeedback emotional training protocol (Phase 3) included eight visits, as detailed in 

Figure I3. Visits 2 and 8 involved the initial and final PTSD severity (CAPS) assessments, respectively. Visit 3 

involved the ecStroop, SDIP, and AAT procedures performed with simultaneous EEG recordings, as well as 
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resting EEG measurements. Visits 4, 5, and 6 were the three EEG-nf training sessions. Visit 7 included the 

same procedures with simultaneous EEG as Visit 3.  

I. Results. 

Seventeen participants completed the 1st EEG-

nf session (visit 4), and sixteen of them 

completed the 3rd EEG-nf session (visit 6). Only 

the results for the 1st EEG-nf session are 

reported here. Most of the subjects were able to 

successfully upregulate the frontal EEG 

asymmetry during the Happy Memories 

conditions (relative to the Rest conditions) using 

the EEG-nf. Three participants (out of 17) 

showed negative asymmetry changes across 

the four nf runs and were classified as non-

responders. Figure I4 shows mean group results for the 1st EEG-nf session (n=14) from the offline EEG data 

analysis. The results need to be considered preliminary, because the EEG analysis involved exclusion of bad 

intervals (characterized by large muscle and eye movement artifacts), but did not involve EEG artifact removal 

by means of independent component analysis (ICA). The shorthand notation ‘F4-F3’ stands for the normalized 

frontal EEG asymmetry FEA=ln(P(F4))−ln(P(F3)) for the alpha band [7.5...12.5] Hz with the standard reference 

(FCz). As illustrated in Fig. I4, the mean Happy vs Rest FEA changes were positive for each of the five task 

runs, and significant (p<0.05, uncorr.) for the Practice run (PR) and Run 2 (R2).  

The FEA changes averaged across the four EEG-nf runs (PR, R1, R2, R3) for each participant were also 

significant: t(13)=2.31, p<0.038. These results demonstrate that the implemented EEG-nf procedure is 

effective and allows successful upregulation of the FEA. Significance of the FEA results can be expected to 

improve after a more accurate EEG 

artifact removal by means of ICA. 

(This work is currently in progress).  

To evaluate variations in alpha 

EEG activity across the brain, we 

conducted an EEG source analysis 

using the exact low-resolution 

electromagnetic tomography 

(eLORETA), implemented in the 

LORETA-KEY software (KEY 

Institute for Brain-Mind Research, 

Switzerland). The analysis was 

applied to the same 64-channel 

EEG data (n=14), transformed to 

the common average reference. It 

involved computation of EEG cross 

spectra separately for the Happy 

Memories with EEG-nf conditions 

and for the Rest conditions across 

the four nf runs (PR, R1, R2, R3). 
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The cross spectra were calculated for the lower alpha band, α1 [8.5...10] Hz, and the upper alpha band, α2 

[10.5...12] Hz, as defined in the LORETA-KEY software.  

The current source density for each band was then obtained using the eLORETA transform. Group analysis 

involved voxel-wise comparison of log-transformed current density values between the Happy Memories and 

Rest conditions. It included a correction for multiple comparisons as implemented in the LORETA-KEY 

software. Figure I5 shows changes in the lower alpha (α1) EEG current density between the EEG-nf task and 

the Rest task. Hemispheric asymmetry is clearly visible for the prefrontal cortex. A pronounced reduction in the 

α1 current density is observed for the left prefrontal regions with the maximum reduction in the left DLPFC (BA 

8, green arrow).  

Figure I6 shows changes in the 

upper alpha (α2) EEG current 

density between the same tasks. A 

more pronounced increase in the 

α2 current density can be seen for 

the right prefrontal regions with the 

maximum increase in the right 

DLPFC (BA 9, green arrow). Thus, 

upregulation of the target FEA 

measure using the EEG-nf is 

accompanied by both the increase 

in localized alpha activity for the 

right DLPFC (underneath F4) and 

the reduction in localized alpha 

activity for the left DLPFC 

(underneath F3). Importantly, the 

deep temporal lobe regions show 

current density variations similar to 

those for the corresponding left/right DLPFC (Figs. I5,I6) suggesting similar activity modulations for the 

left/right amygdala. 

I. Discussion 

Our preliminary EEG-nf results demonstrate the effectiveness of the selected EEG-nf procedure in Veterans 

with and without PTSD. Performance of the EEG-nf task is accompanied by activation (lower alpha) of the left 

DLPFC and de-activation (higher alpha) of the right DLPFC. Both effects are beneficial to PTSD patients 

according to the literature [51, 105]. Normalization of frontal EEG asymmetry may conceivably lead to a 

reduction in severity of PTSD symptoms, as suggested by our experimental results on EEG effects of the 

rtfMRI-nf. Further analyses of our 64-channel EEG data, together with the physiological data (GSR, respiration, 

heart rate) and the psychological assessment measures (Fig. I3), promise to extend these promising 

preliminary results. 

 

3.2 PROBLEMS IN ACCOMPLISHING STUDY TASKS 

Difficult and challenging recruitment is the main reason behind the study delay schedule by two years. We 

therefore requested on Jun 30, 2015 a twelve months extension and later on August 2, 2016 a second twelve-

month, no-cost extension (beyond the original project completion date of Sep 29, 2015), which was approved. 

During the fourth year of the project period we have completed Phase 1 of the study (i.e., real-time fMRI 
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neurofeedback [rtfMRI-nf] and EEG data collection) targeting Aim #1: Establish rtfMRI-nf training feasibility with 

concurrent EEG recordings in a combat-related PTSD population. We have already met and exceeded project 

Milestone #2: fMRI/EEG data collection of 8 subjects per group (control: Veterans with no PTSD; 

neurofeedback, sham: Veterans with PTSD). Data analysis indicates (as described below) rtfMRI-nf amygdala 

training with concurrent EEG recordings in a combat-related PTSD population is feasible. In parallel we have 

also developed the rtfMRI-nf and rtEEG-nf software (Milestone #3) for the purpose of Aim #2: Develop a stand-

alone rtEEG neurofeedback training protocol for PTSD. We identified the variations in frontal upper alpha EEG 

asymmetry during the rtfMRI-nf amygdala training as a promising measure of PTSD severity and treatment 

response. This EEG signal feature is suitable for developing a stand-alone EEG neurofeedback training 

protocol (Milestones # 4-7). We have finished preparation (Milestone #8) and conducted data collection for 

Phase 3 of the project and Aim #3: EEG-only neurofeedback training feasibility in combat-related PTSD. The 

Phase 3 subject visit schedule is shown in Figure 1 below. We have not reached intended recruitment targets 

for Phase 3 of the study, however collected data indicates EEG-nf training feasibility. However larger number 

of subjects would be necessary to ensure clinical efficacy of EEG-nf based on frontal EEG asymmetry beyond 

our pilot observation. Bellow we included comprehensive descriptions of the study recruitment efforts and 

activities during this award, as well as achieved recruitments target. 

 

3.3 PARTICIPANT RECRUITMENTS  

Recruitment proved to be very challenging for this protocol, despite our best and very substantial efforts. In 

October 2012, we began implementing our agreed upon recruitment strategy with the Jack C. Montgomery 

Veterans Administration (VA) Medical Center (Muskogee, OK and Tulsa clinic).  The plan included both 

passive and active recruitment strategies at the local VA behavior health centers.  Upon further investigation, 

active recruitment strategies were not feasible due to VA regulations, so passive recruitment strategies were 

continued, using VA clinicians to provide information about a study to patients.  Passive recruitment methods 

were not fruitful and referrals from the VA did not materialize, despite several meetings and many efforts to 

collaborate. We developed an extensive and creative outreach program in attempt to reach Veterans. 

Approvals from Western Institutional Review Board and the USAMRMC Office of Research Protection, Human 

Research Protection Office were obtained in February 2013 to begin active recruitment.  After obtaining 

approval, we utilized specific media outlets to introduce our study and provide information to the Veteran 

population about research initiatives and needs.  Media resources that have been utilized include 9 

advertisements on 6 different local radio stations, Facebook, Craigslist, commercial slots in Tulsa movie 

theaters, and local newspaper ads.  The Community Service Council (CSC) was engaged on March 19th, 2013.  

This effort yielded contacts with Carla Tanner and Jim Lyall who host monthly Veteran’s Initiative meetings for 

Veteran service providers.  Beginning in April of 2013, recruitment efforts included attending the initiative 

meetings monthly, for a total of 6 (April-September) meetings sponsored by the local Veterans Initiative 

Council.  Each month, meetings were comprised of 20-30 local and federal Veteran service providers and 

groups.  We constructed packets of pamphlets and brochures reviewed them with service providers during 

these monthly meetings.  Recruitment efforts were expanded to the Mental Health Association, Tulsa (MHAT).  

In April of 2013, our recruitment project staff attended and presented at an event called “Crisis: Opportunity for 

Change.”  In addition to presenting, a recruitment and information dissemination table was manned by our 

recruitment-focused staff and study pamphlets were handed out throughout the duration of the event; 

approximately 50 pieces of literature were provided to service providers.  Recruitment efforts also extended to 

local law enforcement and attorneys.  Our staff met with the Tulsa Police Department and presented 

information on our target population and provided a box of 50 pamphlets for distribution to Veteran officers.  
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During that same time, an attorney from Legal Aid Services of Oklahoma was provided a packet of 75 fliers for 

the study.  Also in April, our recruitment for the current study extended to media outlets; an interview with 

project staff was aired on KWGS, the local public radio station, to provide exposure and information about the 

study.  Beginning in May of 2013, our recruitment efforts yielded a new relationship with Brookhaven 

Psychiatric Hospital.  Each month our recruitment-focused staff attended meetings and provided approximately 

235 pieces of study focused literature to various social workers, mental health counselors, psychologists, and 

physicians.  On May 7th, a meeting was held with psychotherapist Daniel Morris of Human Skills and 

Resources.  Approximately 100 brochures were provided for clinicians and clients.  Recruitment efforts were 

also extended to psychiatrists at the Laureate Psychiatric Clinic and Hospital (LPCH).  On May 28th ,2013, we 

hosted our first recruitment oriented luncheon for the psychiatrists and physicians of LPCH.  Study brochures 

were given out.  These luncheons continued through September.  We also engaged Family and Children 

Services; introductory conversations were made and pamphlets mailed for distribution to clients. 

In order to engage Veterans more directly, in June of 2013, recruitment-focused staff participated in the US 

Army National Guard’s 30 Day Yellow Ribbon Event in Jenks, Oklahoma.  A display table was set up and 

manned for the duration of the event.  Approximately 100 packets of information were distributed.  During that 

same month, recruitment efforts aimed to engage the larger community in learning about our research during 

the Tulsa Tough athletic event.  During the month of July, we sought to continue to engage new community 

organizations.  Each month thereafter, fliers and pamphlets were distributed to gyms, Physical Therapy of 

Tulsa, Neurosurgery Associates, and ear/nose/throat specialists.  On July 13-14, 2013, our recruitment staff 

attended the 60 Day Yellow Ribbon Event held by the US Army National Guard in Tulsa.  Primary activities 

involved welcoming Veterans and discussing our research project as well as providing informational materials 

to potential participants and their loved ones.  Approximately 130 packets of information were distributed. Also, 

on July 21, 2013, Muskogee VA held its Welcome Home event at the (Bank of Oklahoma) BOK Center in 

downtown Tulsa and recruitment staff set up two display tables and dispersed information as well as key 

chains and cell phone holders with our institute’s logo to serve as a reminder of the PTSD research being 

conducted.  In the month on August 2013, recruitment efforts included providing a tour of our institute to the 

News on 6 crew.  Our interview and presentation aired on KOTV on August 22, 2013 during the 5:00pm and 

10:00pm time slots. On August 27, 2013, we welcomed the Attorney General and formally presented 

information about our research study and our goals.  In September, 2013, recruitment staff attended the Soul 

Wounds Veterans’ ceremony at All Souls Unitarian Church in Tulsa. With permission, our staff placed study 

brochures on tables in the lobby areas and provided information to attendees.  On September 19, 2013, 

recruitment forged a new partnership with the Veteran Advisory Council and presented information about our 

research study, target population and recruitment needs; pamphlets were distributed to approximately 43 

community Veteran service providers.  Recruitment-focused staff presented before The University of Tulsa 

Student Veteran Association.  On September 26, 2013, recruitment staff attended a meeting at a local 

(Veterans of Foreign Wars) VFW and distributed study brochures to Veterans. On September 26, 2013, 

recruitment efforts included a table set up and information distribution at the Zarrow Mental Health Symposium. 

September 26-30, 2013, recruitment-oriented staff tended a table at the Tulsa State Fair. 

For the second year (October 2013 through October 2014), LIBR recruitment staff developed methods of 

regular outreach in the community for the study.  Recruitment efforts included attending events in the 

community such as mental health events and events that were targeted towards the study population.  Staff 

continued to engage with community organizations in already established ongoing partnership with our 

institution.  In July 2014, aiming to further improve our most effective recruitment tools, recruitment staff 

rewrote the radio advertisements and redesigned the brochures.  We contacted the popular radio stations and 
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have been in ongoing communication with them through September 2014. Results from each radio ad were 

collected and compared.  In August 2014, in an effort to further validate local station genres, recruitment ran 

ads on airways that were reevaluated as promising.  We aired 15 total spots during weekday and weekend 

drive-times with a result of 6 newly established calls.  we looked into a higher ranked rock station via the 

Arbitrends rankings, running 18 spots over three days with a return of 2 calls. In September 2014, in order to 

reach out to a broader population, recruitment staff contacted a Spanish radio station. Negotiations of price 

were made with KBEZ and Clear Channel radio for a PTSD ad running for 42 spots from the over six days. We 

established 4 new calls from this series.  Beginning in October 2014, we also began airing radio ads on two 

radio stations in the Oklahoma City area.  Our recruitment efforts included an on-going monthly relationship 

with certain medical and Veteran organizations such as the Veterans Initiative, Family and Children Services, 

Veteran’s Advisory Council, and Laureate Psychiatric Clinic and Hospital.  Starting in January, staff also began 

meeting with local physicians’ offices, apartment complexes, motorcycle shops, and gun stores, in order to 

arrange for distribution of recruitment materials.  In August 2014, we obtained permission and distributed 

recruitment materials on tables, cork boards, and information booths at the student unions on the Tulsa 

campuses of the University of Oklahoma and Oklahoma State University. Permission was also obtained to 

distribute materials at the University of Tulsa student union.  During the month of October 2014 alone LIBR 

placed over 400 pamphlets, flyers, and business cards at local apartments, gyms, laundry facilities, liquor 

stores, colleges, and technology schools.  Recruitment staff reached out to the psychological health director at 

the 138th fighter wing in Tulsa, the psychological health director at the OKC National Guard, and the Rolling 

Thunder event coordinator. 

During the third year of the grant (October 2014 through October 2015) radio advertising continued to be our 

most successful recruitment effort. We ran 28 ads on 9 different radio stations across multiple genres (country, 

rock, hip-hop, top 40, and contemporary hits) and two metropolitan areas (Oklahoma City and Tulsa).  Radio 

stations were chosen based on previous success as well as Nielson ratings procured during the last year.  We 

also found that advertisements run during patriotic holidays (e.g. Independence Day) seem to be especially 

effective.   

 

Beginning in October 2014, in order to help with recruitment, LIBR decided to have Veterans who were 

excluded from the study participate in a LIBR-funded single-visit version of the study.  We have also continued 

our community outreach efforts during the last year. We have an on-going monthly relationship with certain 

medical and Veteran organizations such as the Veterans Initiative, Family and Children Services, Veteran’s 

Advisory Council, and Laureate Psychiatric Clinic and Hospital.  In November of 2014, LIBR had an open 

house for the community. The open house allowed professionals in the community, including the VA, to come 

to LIBR and learn about ongoing research studies.  We have also provided tours and study information 

specifically for staff of Veteran and mental health organizations, including the Coffee Bunker (a local 

organization that provides a gathering place for Veterans and their families), the Wounded Warriors (a program 

that provides hyperbaric oxygen therapy to Veterans to treat TBI and PTSD), and the Mental Health 

Association of Tulsa.  Our recruitment staff was able to obtain a list of zip codes where many Veterans reside. 

Staff attended community organizations in those areas to build partnerships that will help with recruitment.   

During the fourth year of the grant (October 2015 through September 2016) radio advertising continued to be 

our most successful recruitment effort. We ran 15 ads for a total of 1221 ad spots on 4 different radio stations 

across multiple genres (country, rock, hip-hop, and contemporary hits) in the Tulsa area.  This year we also 

aired a television ad for the study. The advertisement aired on the local FOX station as well as the local 

MyNetworkTV station. There were a total of 290 ad spots over 19 days in June.  We have also continued 
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running advertisements on Facebook on a quarterly basis. These advertisements reach up to 200,000 

individual accounts and target both male and female users to maximize the number of both direct and indirect 

referrals.  We have also continued our community outreach efforts during the last year. LIBR staff participated 

in the PURPOSE 2.2 Run/Walk, an event to raise awareness of Veteran suicide, on April 30, 2016. LIBR also 

promoted the study at a number of events throughout the year, including the North Tulsa Neighborhood 

Summit (August 27, 2016) and the Zarrow Symposium (September 28-30, 2016).  We have an on-going 

monthly relationship with certain medical and Veteran organizations such as the Veterans Initiative, Family and 

Children Services, Veteran’s Advisory Council, and Laureate Psychiatric Clinic and Hospital.  We also 

continued our efforts directly targeting recruiting patients/potential participants from Family and Children 

Services monthly and the Laureate Psychiatric Clinic and Hospital weekly. 

During the fifth year of the grant (October 1, 2016 through June 30, 2017) radio advertising continued to be our 

most successful recruitment effort. We ran 1 ad with 70 ad spots on the Tulsa-area active rock station.  LIBR 

staff members participated in monthly on-air interviews the hip- hop station, which is the highest rated station 

for minority listeners in the Tulsa area according to Arbitron.  This time we also once again aired a television ad 

for the study. The advertisement aired on the local FOX station as well as the local MyNetworkTV station. 

There were a total of 316 ad spots over the month of October.  We have also continued running 

advertisements on Facebook on a quarterly basis.  These advertisements reach up to 200,000 individual 

accounts and target both male and female users to maximize the number of both direct and indirect referrals.  

During January and February, LIBR recruitment staff attended the Oklahoma State University Tulsa Vendor 

Days events to promote the current study as well as the other LIBR studies.  LIBR recruitment staff attended a 

number of Veteran-focused events during the preceding quarter to promote the study, distribute printed 

material, and answer questions. These events included the Tulsa Oklahoma Veterans Project Easter Egg Hunt 

(April 8), local comedy club The Looney Bin's “Ha Ha’s for Vets” (April 19), and the Brian “Bucky” Utter 

Memorial Golf Tournament in Broken Arrow, OK supporting BRRX4Vets (May 12). LIBR recruitment also 

visited 8 local schools (universities, community colleges, and technical schools) to distribute recruitment 

materials. Other general LIBR recruitment events included the Tulsa Roots Music Global Bash (April 15), 

National Trails Day (June 3), and Tulsa Tough (June 9-11). On May 31st Dr. Bodurka and members of the LIBR 

administration met with leaders from the local VFW (Post 577).  We have an on-going monthly relationship with 

certain medical and Veteran organizations such as the Veterans Initiative, Family and Children Services, 

Veteran’s Advisory Council, and Laureate Psychiatric Clinic and Hospital. Each month, our recruitment-focused 

staff attended meetings and provided presentations as well as provided study-focused literature to various 

social workers, mental health counselors, psychologists, and physicians. These recruitment efforts included 

meetings and presentations with selected clinicians who work directly with the target population. We also 

continued our efforts directly targeting recruiting patients/potential participants from Family and Children 

Services monthly and the Laureate Psychiatric Clinic and Hospital weekly. 

In summary, considerable institutional support including but not limited to staff time and marketing efforts were 

committed over five years in an effort to enroll Veterans, this is a challenging group to recruit for multiple 

complicated reasons. 

 

3.4 ENROLLMENT INFORMATION FOR 2013-2017 

During the first year of the study, October 1, 2012 through September 30, 2013, we received 61 calls regarding 

the study.  Sixteen Veterans enrolled in the study 11 of those Veterans completed at least one fMRI scan, six 

completed at least one session of the fMRI neurofeedback session.  Two Veterans completed the study. 
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In October 2014 LIBR had received 300 phone calls since the study began.  During the second year of the 

study, 85 were consented to the screening assessment.  Out of the 85 screens, 46 were eligible, 23 consented 

to the study and 17 completed the study. 

Beginning in January of 2015, LIBR began using a new system for storing subject data.  The new system is 

paperless and made it easier to track subjects and to facilitate the intake of Veterans who contact LIBR 

through streams other than our study focused recruitment efforts.  Between January and October of 2015, 210 

Veterans completed the LIBR phone screening, 32 consented to the study and 19 Veterans completed the 

study. 

During the fourth year of the study, we completed phase 1, began to recruit exclusively for the phase 3 of the 

study, and rewrote some of the advertising material to align with the participation criteria for the EEG-only 

experiments.   

Between October 1, 2015 and September 30, 2016, 414 Veterans contacted LIBR.  During this time, 3 

Veterans were consented to phase 1 and 2 Veterans completed phase 1, bringing the total enrolled in Phase 1 

74 and the total who completed phase 1 to 40. For Phase 3, 8 consented to the study and 4 completed the 

study.   

During the fifth year of the study we recruited exclusively for phase 3. 216 Veterans contacted LIBR, 18 

consented for the study and 11 completed the study, for a total of 26 subjects enrolled in phase 3 and 15 

completed.   

The study target enrollment for Phase 1 was 72 Veterans, and Phase 3 was 72 Veterans.  The table below 

summarized the study Phase 1 and Phase 3 enrollments: 

 Phase 1 (rtfMRI-nf with EEG) Phase 2 (stand-alone EEG-nf) 

Contacted 985 630 

Enrolled 74 (target 72) 26 (target 72) 

Completed the study all visits 40 15 

 

The demographic for the PTSD Veteran enrollment goes as follows: 100 % were male subjects, 70 % 

Caucasian, 13% American Indian, 0% Asian, 3% Black/African American, 12% more than one race, and 2% 

Hawaiian/Pacific Islander.   

 

3.5 RECOMMENDED CHANGES OR FUTURE WORK 

A) Duration of the training and sustainability of the training effect 

We observed significant PTSD symptom reduction due to the rtfMRI-nf positive emotional training and this 

symptom reduction continued across training sessions. However, consistent training effect on the LA activity 

modulation was seen only in the first training session. This suggests that continuing symptom reduction might 

be due to a sustained effect of the first training session and the following training sessions might not have 

contributed to the treatment effects. In the future study, we should investigate necessary training duration to 

obtain treatment effect and also how long such effect is sustained. 

B) Non-invasive rtfMRI-nf modulation of other regions than amygdala to alleviate PTSD symptoms 

The discrepancy between the training effect on the LA activity and symptom change also suggests that 

symptom relief might be mediated by brain modulation other than the LA activity. In fact, our analysis in section 
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C, D, and E indicated that the changes in LA activity and resting-state connectivity changes were not 

associated with symptom change. The analysis revealed that the training effect was not limited in the LA region 

and the activation reduction in the salience network regions (Fig. C2) and increased resting-state functional 

connectivity at the precuneus were significantly correlated with symptom reduction. The rtfMRI-nf training that 

directly targets this activity or connectivity might be more effective to alleviate PTSD symptoms. As there were 

individual variabilities in the training effect and symptom reduction (section C), the future study needs to 

elucidate which region’s modulation is most effective for what type of patient. Personalized, non-invasive 

modulation with rtfMRI-nf and concurrent EEG recording and determination of the neural interactions within the 

brain circuit relevant to positive emotion experience, memory retrieval and approach motivation can lead to 

novel and more efficient clinical targets for treatment of PTSD. 

C) EEG neurofeedback positive emotion regulation training during concurrent fMRI in PTSD.  

Our preliminary of the frontal EEG asymmetry in alpha band (FEA) EEG neurofeedback (EEG-nf) results 

demonstrate the effectiveness of the selected EEG-nf procedure in Veterans with and without PTSD. 

Performance of the EEG-nf task was accompanied by activation (lower alpha) of the left dorsolateral prefrontal 

cortex (DLPFC) and de-activation (higher alpha) of the right DLPFC. Both effects are beneficial to PTSD 

patients according to the literature [51, 105]. Therefore normalization of FEA may conceivably lead to a 

reduction in severity of PTSD symptoms, as suggested by our experimental results on EEG effects of the 

rtfMRI-nf (section A, B). However further data collection, and analysis 64-channel EEG data, together with the 

physiological data (GSR, respiration, heart rate) and the psychological assessment measures would be 

required to fully validate. In addition, conducting FEA-base EEG-nf with concurrent fMRI recording would even 

further established EEG-nf modulation association with: (a) amygdala, DLPFC, and ACC, precuneus BOLD 

activities, (b) PTSD symptoms improvements. Developing and validating the EEG-only neurofeedback with 

fMRI can lead to portable and affordable fMRI-verified EEG-based interventions for depression. 

 

4. KEY RESEARCH ACCOMPLISHMENTS 
 

 Real-time fMRI neurofeedback amygdala positive emotional training is feasible in Veterans with combat 

related PTSD, and all study participants tolerate this procedure well, with no adverse effects. 

 Veterans with PTSD can learn to self-regulate their amygdala BOLD responses during recall of positive 

autobiographical memories. 

 The rtfMRI-nf training of the left amygdala resulted in statistically and clinical significant improvements in 

PTSD (CAPS, PCL-M) and depression (HRSD) symptoms. Significant reductions in PTSD and depression 

symptoms were seen in Veterans with PTSD in the experimental group but not in controls.  

 Functional connectivity between the amygdala and the left dorsolateral prefrontal cortex as well as the 

orbitofrontal cortex was enhanced during the rtfMRI-nf and this enhancement positively correlated with 

PTSD severity, reversing connectivity deficiencies specific to PTSD. 

 The rtfMRI-nf training resulted in left-lateralized EEG coherence enhancement, indicating increased 

coherent neuronal activity in the left fronto-temporal regions and suggesting therapeutic potential and a 

beneficial increase in approach motivation. Such increase is more pronounced in patients with more severe 

PTSD.   

 Modulation of BOLD LA activity during the neurofeedback procedure was accompanied by changes in 

frontal EEG asymmetry (FEA) in the upper alpha band (right vs. left electrodes, more positive FEA) 

consistent with more approach-oriented responses and traits as well as more positive emotions.  
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 Reduction in CAPS ratings was associated with reduction in the average FEA changes during the rtfMRI-nf 

task, indicating that variations in FEA during rtfMRI-nf training might independently provide valuable 

information about PTSD severity and treatment response.  

 FEA was identified as a promising target for EEG-only neurofeedback training among Veterans with 

combat-related PTSD. 

 Individual variability in response to the training exists. Only the PTSD patients with low baseline left 

amygdala (LA) activity showed significant increase of LA activity across the training sessions, suggesting 

increased LA activity was most effective for subtypes of PTSD patients with hypoactive amygdala response 

to positive memory recall. 

 PTSD symptom relief after the sessions was not associated with LA activity change. We found many 

regions that showed a rtfMRI-nf training effect. Decreasing activity in salience network regions across 

sessions was significantly associated with symptom reduction. 

 Novel connectome-wide functional connectivity analysis of Veterans with and without PTSD and matched 

healthy controls conducted before the neurofeedback training revealed reduced connectivity between the 

lateral prefrontal regions and the salience network regions in PTSD. 

 The decreased connectivity between the parahippocampal gyrus and visual cortex supported the dual 

representation theory of PTSD, which suggests dissociation between sensory and contextual memory 

representations in PTSD. The theory also supposes that the precuneus is a region that triggers retrieval of 

sensory memory of traumatic events. The decreased connectivity at the precuneus for Veterans without 

PTSD might be associated with suppressing such a process. 

 The rtfMRI-nf training effect was not limited to a feedback target region and symptom relief could be 

mediated by brain modulation in several regions other than a feedback target area. 

 Longitudinal connectome-wide analysis revealed neurofeedback training effects on resting state functional 

connectivity. Training affected both the left amygdala and the supplementary motor area (SMA), anterior 

cingulate cortex (ACC), insula, precuneus and prefrontal regions connectivities. These changes normalized 

aberrant connectivities for both Veterans with and without PTSD. Connectivity increases between the SMA 

and the dACC and between the precuneus and the left superior frontal gyrus were associated with a 

decrease in PTSD symptoms measured by PCL-M and CAPS sub-D, respectively. 

 The symptom reduction due to rtfMRI-nf left amygdala positive emotional training was positively associated 

with the hippocampus volume increase, specifically in the CA1 and the parasubiculum regions, such that 

participants with a greater decrease in PTSD symptoms had more increase in the volumes, suggesting 

recovery from hippocampus atrophy specific to PTSD. 

 The rtfMRI-nf training procedure resulted in trends toward reducing anxious reactivity to individualized 

traumatic event cues presented via a script-driven imagery procedure, although the trend has not yet 

reached statistical significance.  

 We have discovered temporal independent EEG microstates in individuals with combat related PTSD and 

found microstates that differ between Veterans with and without PTSD symptoms. The occurrence 

frequency/rate of the EEG-ms which was associated with BOLD dorsal default mode, and salience 

networks, statistically differentiates PTSD and healthy Veterans groups and positively correlates with PTSD 

symptom severity.  

 The occurrence rate of the EEG microstates associated with the dorsal default mode network was higher in 

PTSD than control, and positively associated with the severity of PTSD symptoms. The occurrence rate of 

the electrophysiological state associated with the anterior salience network was lower in PTSD than 

control, and negatively associated with the hedonic tone in PTSD participants. 
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 Real-time frontal EEG asymmetry in the alpha band EEG neurofeedback training during recalling positive 

emotions is feasible in Veterans with combat related PTSD, and all study participants tolerate this 

procedure well, with no adverse effects. 

 EEG-nf positive emotional training has beneficial effect for Veterans with PTSD by normalizing frontal EEG 

asymmetry in alpha band through activation (lower EEG alpha power) of the left dorsolateral prefrontal 

cortex (DLPFC) and de-activation (higher EEG alpha power) of the right DLPFC. 

 

 

5. REPORTABLE OUTCOMES  

5.1 SUBMITTED MANUSCRIPTS 

Peer-Reviewed Scientific Journals:  

1) Misaki, M., Barzigar, N., Zotev, V., Phillips, R., Cheng, S., Bodurka, J. (2015). Real-time fMRI processing 
with physiological noise correction - Comparison with off-line analysis. J Neurosci Methods 256, 117-121. (pdf 
copy is attached) 

2) Wong, C.K, Zotev, V., Misaki, M., Phillips, R., Luo, Q., Bodurka, J. (2016) Automatic EEG-assisted 
retrospective motion correction for fMRI (aE-REMCOR). Neuroimage. 129:133-47. doi: 
10.1016/j.neuroimage.2016.01.042.  (pdf copy is attached) 

3) Mayeli A, Zotev V, Refai H, Bodurka J. (2016) Real-time EEG artifact correction during fMRI using ICA. J 
Neurosci Methods. 2016 Sep 30;274:27-37. doi: 10.1016/j.jneumeth.2016.09.012. (pdf copy is attached)  

4) Misaki, M., Phillips, R., Zotev, V., Wong, C.K., Wurfel, B., Krueger, F., Feldner M., Bodurka, J. (2017) 
Connectome-wide investigation of altered resting-state functional connectivity in war Veterans with and without 
posttraumatic stress disorder. Neuroimage: Clinical 17:285-296. doi: 10.1016/j.nicl.2017.10.032. (pdf copy is 
attached) 

5) Wong, C.K., Luo, Q., Zotev, V. Phillips, R., Chan, K.W.C, Bodurka, J. Automatic cardiac cycle determination 
directly from EEG-fMRI data by multi-scale peak detection method. Journal of Neuroscience Method (2017, 
revised under review; pdf copy is attached) 

6) Yuan, H., Phillips, R., Wong, C.K., Zotev, V., Misaki, M., Wurfel, B.E., Krueger, F., Feldner, M., Bodurka, J. 
Tracking resting state connectivity dynamics in Veterans with PTSD. Neuroimage: Clinical (2017, revised 
under review; pdf copy is attached). 

7) Zotev, V., Phillips, R., Misaki, M., Wong, C.K., Wurfel, B.E., Krueger, F., Feldner, M., Bodurka, J., Real-time 
fMRI neurofeedback training of amygdala activity with simultaneous EEG in Veterans with combat-related 
PTSD. Neuroimage: Clinical (2017, revised under review; pdf copy is attached). 

8) Misaki, M., Phillips, R., Zotev, V., Wong, C.K., Wurfel, B., Krueger, F., Feldner M., Bodurka, J., Real-time 
fMRI amygdala neurofeedback positive emotional training normalized resting-state functional connectivity in 
combat Veterans with and without PTSD: a connectome-wide investigation. Neuroimage: Clinical (2017, 
revised under review; pdf copy is attached). 

9) Rahmani, B., Wong, C.K., Norouzzadeh, P., Bodurka, J., McKinney, B.A., Dynamical Hurst analysis 
identifies EEG channel differences between PTSD and healthy controls. PLOS One (2017, revised under 
review; pdf copy is attached). 
 
5.2 CONFERENCE ABSTRACTS 

1) Barzigar, N., Misaki, M., Zotev, V., Yuan, H., Phillips, R., Chang, S., Bodurka, J., (2014). Real-time image 
preprocessing and physiological noise correction for fMRI. Poster presented at the 20th Annual Meeting of the 
Organization for Human Brain Mapping, Hamburg, Germany, In Conf. Proc. 2031. 

2) Wong, C.K., Zotev, V., Yuan, H., Bodurka, J. (2014). Cardiac cycle detection in EEG with residual MRI 
gradient artifact by multiple-scale peak detection. Poster presented at the 20th Annual Meeting of the 
Organization for Human Brain Mapping, Hamburg, Germany, In Conf. Proc. 3470. 

3) Yuan, H., Wong, C.K., Phillips, R., Zotev, V., Misaki, M., Feldner, M., Bodurka, J. (2014). Default mode 
changes in Veterans with PTSD after real-time fMRI neurofeedback training of amygdala. Poster presented at 

http://dx.doi.org/10.1016/j.neuroimage.2016.01.042


45 

 

the 20th Annual Meeting of the Organization for Human Brain Mapping, Hamburg, Germany, In Conf. Proc. 
1402. 

4) Wong, C.K., Zotev, V., Yuan, H., Misaki, M., Phillips, R., Luo, Q., Bodurka, J. (2015). An automatic EEG-
assisted retrospective motion correction for fMRI (aE-REMCOR). Poster presented at the 23rd Annual Meeting 
of the International Society of Magnetic Resonance in Medicine, Toronto, Canada. In: Proc. Intl. Soc. Magn. 
Reson. Med. 23, 2562. 

5) Zotev, V., Phillips, R., Misaki, M., Wong C., Wurfel, B., Meyer, M., Krueger, F., Feldner, M., Bodurka, J. 
(2015) Real-time fMRi neurofeedback with simultaneous EEG in combat-related PTSD: identification of EEG 
measures of PTSD severity and treatment response. Poster presented at the 23rd Annual Meeting of the 
International Society of Magnetic Resonance in Medicine, Toronto, Canada. In: Proc. Intl. Soc. Magn. Reson. 
Med. 23, 1366. 

6) Phillips, R., Zotev, V., Young, K., Masaya, M., Wong, C.K., Wurfel, B., Meyer, M., Krueger, F., Feldner, M., 
Bodurka, J. (2015). Amygdala connectivity after real-time fMRI neurofeedback emotional training in combat-
related PTSD. Poster presented at the 23rd Annual Meeting of the International Society of Magnetic 
Resonance in Medicine, Toronto, Canada. In: Proc. Intl. Soc. Magn. Reson. Med. 23, 1360. 

7) Yuan, H., Phillips, R., Zotev, V., Misaki, M., Wong, C., Wurfel, B., Meyer, M., Krueger, F., Feldner, M., 
Bodurka, J. (2015) Role of ACC in fMRI neurofeedback training of amygdala in Veterans with PTSD. Poster 
presented at the 21st Annual Meeting of the Organization for Human Brain Mapping Honolulu, USA, In Conf. 
Proc. 1024. 

8) Zotev, V., Phillips, R., Misaki, M., Wong, C., Wurfel, B., Meyer, M., Krueger, F., Feldner, M., Bodurka, J. 
(2015) rtfMRI neurofeedback with concurrent EEG in combat-related PTSD: EEG measures of treatment 
response. Poster presented at the 21st Annual Meeting of the Organization for Human Brain Mapping 
Honolulu, USA, In Conf. Proc. 1025. 

9) Mayeli, A., Zotev, V., Refai, H., Bodurka, J. (2015)  ICA-based automatic artifacts detection and removal 
from EEG data recorded simultaneously with fMRI. Poster presented at the 21st Annual Meeting of the 
Organization for Human Brain Mapping Honolulu, USA, In Conf. Proc. 1831. 

10) Yuan, H., Phillips, R., Zotev, V., Misaki, M., Wong, C., Wurfel, B., Meyer, M., Krueger, F., Feldner, M., 
Bodurka, J. (2015) Tracking resting state connectivity dynamics in Veterans with PTSD: new insights from 
EEG-fMRI. Poster presented at the 21st Annual Meeting of the Organization for Human Brain Mapping 
Honolulu, USA, In Conf. Proc. 1931. 

11) Zotev, V., Phillips, R., Misaki, M., Wong, C.K., Wurfel, B., Meyer, M., Krueger, F., Feldner, M., Bodurka, J. 
(2015). Evaluation of rtfMRI Neurofeedback Training Effects in Combatrelated PTSD Using Simultaneous 
EEG. Poster presented at the 24th Annual Meeting of the International Society of Magnetic Resonance in 
Medicine, Singapore. In: Proc. Intl. Soc. Magn. Reson. Med. 24, 280 

12) Mayeli, A., Zotev, V., Refai, H., Bodurka, J. (2016). Real-time ICA-based artifact correction of EEG data 
recorded during functional MRI. E-poster presented at the 24th Annual Meeting of the International Society of 
Magnetic Resonance in Medicine, Singapore. In: Proc. Intl. Soc. Magn. Reson. Med. 24, 3773 

13) Wong, C.K., Zotev, V., Misaki, M., Phillips, R., Luo, Q., Bodurka, J. (2016). Automatic EEG-assisted 
retrospective head motion correction improves rs-fMRI connectivity analysis. Poster presented at the 24th 
Annual Meeting of the International Society of Magnetic Resonance in Medicine, Singapore. In: Proc. Intl. Soc. 
Magn. Reson. Med. 24, 3774 

14) Wong, C.K., Zotev, V., Misaki, M., Phillips, R., Luo, Q., Bodurka, J. (2016). Support vector machine 
classification of head motion independent components from EEG-fMRI. Poster presented at the 22nd Annual 
Meeting of the Organization for Human Brain Mapping, Geneva, Switzerland. In: Conf. Proc. 1811. 

15) Phillips, R., Zotev, V., Young, K., Misaki, M., Wong, C.K., Wurfel, B., Meyer, M., Krueger, F., Feldner, M., 
Bodurka, J. (2016). Changes in Amygdala Connectivity During Multiple Visits of Real-Time fMRI 
Neurofeedback Training. Poster presented at the 22nd Annual Meeting of the Organization for Human Brain 
Mapping, Geneva, Switzerland. In: Conf. Proc. 3951. 

16) Zotev, V., Phillips, R., Misaki, M., Wong, C.K., Wurfel, B., Meyer, M., Kruger, F., Feldner, M., Bodurka, J. 
(2016). Evaluation of rtfMRI Neurofeedback Training Effects in Combat-related PTSD Using Simultaneous 
EEG. Poster presented at the 22nd Annual Meeting of the Organization for Human Brain Mapping, Geneva, 
Switzerland. In: Conf. Proc. 1082. 
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17) Rahmani, B., Wong, C.K., Norouzzadeh, P., Bodurka, J., McKinney, B. (2016). Dynamical Hurst analysis of 
EEG signal discriminates between PTSD and healthy controls. Poster presented at the 22nd Annual Meeting of 
the Organization for Human Brain Mapping, Geneva, Switzerland. In: Conf. Proc. 1756. 

18) Misaki, M., Phillips, R., Zotev, V., Wong, C.K., Wurfel, B., Kruger, F., Feldner, M., Bodurka, J. (2017). 
Connectome-wide exploration of altered resting state connectivity in combat Veterans with and without PTSD 
and real-time fMRI neurofeedback training effect on abnormal connectivity. Poster presented at the 25th Annual 
Meeting of the International Society of Magnetic Resonance in Medicine, Honolulu, USA, In: Proc. Intl. Soc. 
Magn. Reson. Med. 25, 4213. 

19) Wong, C.K., Luo, Q., Zotev, V., Phillips, R., Bodurka, J. Multi-scale peak detection method for an automatic 
cardioballistic artifact period determination directly from EEG-fMRI data. (2017) Poster presented at the 25th 
Annual Meeting of the International Society of Magnetic Resonance in Medicine, Honolulu, USA, In: Proc. Intl. 
Soc. Magn. Reson. Med. 25, 5414. 

20) Zotev, V., Phillips, R., Misaki, M., Wong, C.K., Wurfel, B., Meyer, M., Kruger, F., Feldner, M., Bodurka, J. 
(2017). Real-time fMRI neurofeedback of the amygdala enhances amygdala-orbitofrontal connectivity and 
lateralized EEG coherence in Veterans with combat-related PTSD. In: Proc. Intl. Soc. Magn. Reson. Med. 25, 
512. 

21) Misaki, M., M., Phillips, R., Zotev, V., Wong, C.K., Wurfel, B., Kruger, F., Feldner, M., Bodurka, J. (2017). 
Altered resting-state connectivity in PTSD and real-time fMRI neurofeedback training effect. Poster presented 
at the Annual Meeting of the Organization for Human Brain Mapping OHBM2017, Vancouver, Canada. In: 
Conf. Proc. 1084. 

22) Wong, C.K., Zotev, V., Phillips, R., Misaki, M., Bodurka, J. (2017). Toward real-time head motion correction 
for EEG-fMRI: EEG-derived motion components classification. Poster presented at the Annual Meeting of the 
Organization for Human Brain Mapping OHBM2017, Vancouver, Canada. In: Conf. Proc. 1108. 

23) Zotev, V., Phillips, R., Misaki, M., Wong, C.K., Wurfel, B., Meyer, M., Kruger, F., Feldner, M., Bodurka, J. 
(2017). Real-time fMRI neurofeedback of the amygdala enhances amygdala-orbitofrontal connectivity in 
combat-related PTSD. Poster presented at the Annual Meeting of the Organization for Human Brain Mapping 
OHBM2017, Vancouver, Canada. In: Conf. Proc. 2620. 

24) Misaki, M., Zotev, V., Phillips, R., Wong, C.K., Kruger, F., Feldner, M., Bodurka, J. (2017). Individual 
difference in the effect of amygdala neurofeedback emotional training in combat-related PTSD. Poster 
presented at the Real-time functional imaging and neurofeedback conference 2017, Nara, Japan, In: Conf. 
Proc. 31. 

25) Misaki, M., Phillips, R., Zotev, V., Wong, C.K., Wurfel, B., Kruger, F., Feldner, M., Bodurka, J. Whole brain 
effect of real-time fMRI amygdala neurofeedback emotional training and its association with PTSD symptom 
reduction. (2017, under review, submitted to Joint Annual Meeting of the International Society of Magnetic 
Resonance in Medicine and European Society of Magnetic Resonance in Medicine and Biology, June 2018, 
Paris, France). 

26) Misaki, M., Phillips, R., Zotev, V., Wong, C.K., Wurfel, B., Kruger, F., Feldner, M., Bodurka, J. A 
connectome-wide investigation of the longitudinal effect of real-time fMRI amygdala neurofeedback emotional 
training on resting-state connectivity in combat Veterans with PTSD. (2017, under review, submitted to Joint 
Annual Meeting of the International Society of Magnetic Resonance in Medicine and European Society of 
Magnetic Resonance in Medicine and Biology, June 2018, Paris, France). 

27) Zotev, V., Phillips, R., Misaki, M., Wong, C.K., Wurfel, B., Meyer, M., Kruger, F., Feldner, M., Bodurka, J. 
EEG correlates of real-time fMRI neurofeedback of the amygdala in combat-related PTSD evaluated using 
eLORETA. (2017, under review, submitted to Joint Annual Meeting of the International Society of Magnetic 
Resonance in Medicine and European Society of Magnetic Resonance in Medicine and Biology, June 2018, 
Paris, France). 

28) Wong, C.K., Luo, Q., Zotev, V., Phillips, R., Chan, K.W.C., Bodurka, J. Improved cardiobalistic artifact 
waveform for artifact correction with direct cardiac cycle detection from EEG-fMRI data. (2017, under review, 
submitted to Joint Annual Meeting of the International Society of Magnetic Resonance in Medicine and 
European Society of Magnetic Resonance in Medicine and Biology, June 2018, Paris, France). 

29) Wong, C.K., Luo, Q., Zotev, V., Phillips, R., Chan, K.W.C., Bodurka, J. Direct cardiobalistic cycle 
measurement from EEG-fMRI data improves artifact removal template. (2017, under review, submitted to 
Annual Meeting of the Organization for Human Brain Mapping OHBM2018, June 2018, Singapore). 
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30) Misaki, M., Mulyana, B., Phillips, R., Zotev, V., Wong, C.K., Wurfel, B., Kruger, F., Feldner, M., Bodurka, J. 
Real-time fMRI amygdala neurofeedback training lowers PTSD symptoms with hippocampus volume increase. 
(2017, under review, submitted to Annual Meeting of the Organization for Human Brain Mapping OHBM2018, 
June 2018, Singapore). 

 
5.3 PRESENTATIONS 

1) Bodurka, J. (2014). Emotional regulation training for treating warfighters with combat-related PTSD using 
real-time fMRI and EEG-assisted neurofeedback. Progress report presented at the MOMRP PTSD Biomarkers 
IPR annual meeting, Ft. Detrick, MD.  

2) Feldner, M. T. (2014). Preliminary Evidence for the Efficacy of Real-Time fMRI Neurofeedback in the 
Treatment of PTSD. Lecture presented to the College Student Interest Group in Neurology (CO-SIGN) at the 
University of Arkansas.  

3) Phillips, R., Zotev, V., Yuan, H., Young, K., Wong, C.K., Wurfel, B., Krueger, F., Feldner, M., Bodurka, J., 
Self-regulation of amygdala activation with real-time fMRI neurofeedback in combat-related PTSD. (2014). In: 
Proc. Intl. Soc. Magn. Reson. Med. 22, 252. 

4) Bodurka, J. (2015). Emotional regulation training of amygdala using real-time fMRI and EEG-assisted 
neurofeedback in combat-related PTSD. Talk (seminar) at the 31st Annual Meeting of the International Society 
for Traumatic Stress Studies, New Orleans, Louisiana, USA.  

5) Bodurka, J. (2015). Emotional regulation training with real-time fMRI neurofeedback of the amygdala and 
simultaneous EEG measurements. Talk (key note) at the Neuroscience Symposium, Central Institute for 
Mental Health, Mannheim, Germany. 

6) Bodurka, J. (2015). Emotional regulation training for treating warfighters with combat-related PTSD using 
real-time fMRI and EEG-assisted neurofeedback. Progress report presented at the MOMRP PTSD Biomarkers 
IPR annual meeting, Ft. Detrick, MD.  

7) Bodurka, J. (2016).  Emotion Regulation Training with Real-Time fMRI Neurofeedback of the Amygdala and 
Concurrent EEG Recordings in Combat-Related PTSD. Talk at the 13th Annual Meeting of the Society for Brain 
Mapping and Therapeutics, Miami, Florida, USA 

8) Bodurka, J. (2016). Advances in multimodal MRI and EEG Imaging for studying the human brain. Talk 
(invited first inaugural speaker of the Stephenson School of Biomedical Engineering seminar series), 
Oklahoma University, Norman, Oklahoma, USA.  

9) Bodurka J. (2016). Emotion Regulation Training of Amygdala using Real-time fMRI and EEG-assisted 
Neurofeedback. Talk (seminar) at the 22nd Annual Meeting of Organization for Human Brain Mapping, Geneva, 
Switzerland.  

10) Bodurka J. (2017). Real-time fMRI neurofeedback amygdala emotional regulation training with concurrent 
EEG recordings. Mount Sinai Translational and Molecular Imaging Institute Seminar Series, New York, USA. 

11) Bodurka J. (2017). Non-invasive brain neuromodulation with real-time fMRI neurofeedback amygdala 
emotional regulation training and concurrent EEG recordings. Center for Brain Health, The University of Texas 
at Dallas, Seminar Series, Dallas, TX, USA.  

12) Bodurka J. (2017). Real-time fMRI neurofeedback modulation of amygdala hemodynamic activity improves 
the approach motivation deficiencies in depression and PTSD.  Talk at the 15th Annual Meeting of the Society 
for Brain Mapping and Therapeutics, Los Angeles, California, USA 

13) Bodurka J. (2018). Real-time fMRI amygdala neurofeedback emotional training effects and its association 
with PTSD symptoms reductions. Invited talk at the 16th Annual Meeting of the Society for Brain Mapping and 
Therapeutics, Los Angeles, California, USA 

 

5.4 METHODS DEVELOPMENT 

1) Misaki, M., Barzigar, N., Zotev, V., Phillips, R., Cheng, S., Bodurka, J. (2015). Real-time fMRI processing 
with physiological noise correction - Comparison with off-line analysis. J Neurosci Methods 256, 117-121. – pdf 
file with this publication is attached. 

We have developed a real-time fMRI processing system with a dedicated graphic processing unit (GPU) for 
intensive whole-brain fMRI data processing in real-time. The system implements all of image processing that 
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are used in an off-line analysis including physiological noise correction. It can complete whole-brain GLM 
analysis with more than 100,000 voxels and more than 250 volumes in less than 300ms. 

2) Wong CK, Zotev V, Misaki M, Phillips R, Luo Q, Bodurka J. (2016) Automatic EEG-assisted retrospective 
motion correction for fMRI (aE-REMCOR). Neuroimage. 129:133-47. doi: 10.1016/j.neuroimage.2016.01.042. 
– pdf file with this publication is attached. 

We have development of an enhanced an automated implementation of EEG-assisted retrospective motion 
correction (E-REMCOR), which utilizes EEG motion artifacts to correct the effects of head movements in 
simultaneously acquired fMRI data on a slice-by-slice basis – aE-REMCOR. The aE-REMCOR algorithm, 
implemented in MATLAB, enables automated preprocessing of the EEG data, ICA decomposition, and, 
importantly, automatic, computer-based identification of motion-related ICs. The aE-REMCOR is capable of 
substantially reducing head motion artifacts in fMRI data.  

3) Mayeli A, Zotev V, Refai H, Bodurka J. (2016) Real-time EEG artifact correction during fMRI using ICA. J 
Neurosci Methods. 2016 274:27-37. doi: 10.1016/j.jneumeth.2016.09.012. – pdf file with this publication is 
attached. 

We have developed and implemented improved, real-time ICA-based EEG artifact corrections method during 
simultaneous EEG-fMRI experiments. 

4) Wong, C.K., Luo, Q., Zotev, V. Phillips, R., Chan, K.W.C, Bodurka, J. Automatic cardiac cycle determination 
directly from EEG-fMRI data by multi-scale peak detection method. Journal of Neuroscience Method (2017, 
revised under review) – pdf file with the revised manuscript is attached. 

We developed a better algorithms for artifact suppression in EEG data acquired simultaneously with fMRI, by 
improved method for automatic period detection of cardioballistic artifacts in EEG-fMRI data. The proposed 
algorithm achieves a higher and better detection accuracy of the artifact occurrence on a large EEG dataset in 
EEG-fMRI, and importantly without using the ECG recordings. It virtually eliminates the need of ECG for BCG 
artifact removal. Importantly, it can be applied retrospectively on the large EEG-fMRI data sets already 
acquired. 

5) Misaki, M., Phillips, R., Zotev, V., Wong, C.K., Wurfel, B., Krueger, F., Feldner M., Bodurka, J., Real-time 
fMRI amygdala neurofeedback positive emotional training normalized resting-state functional connectivity in 
combat Veterans with and without PTSD: a connectome-wide investigation. Neuroimage: Clinical (2017, 
revised under review) – pdf file with manuscript is attached. 

We have developed novel longitudinal multivariate distance matrix regression (MDMR) analysis to investigate 
and identify the rtfMRI-nf left amygdala training effect on whole-brain voxel-by-voxel resting state connectivity 
in Veterans with and without PTSD. 

6) Rahmani, B., Wong, C.K., Norouzzadeh, P., Bodurka, J., McKinney, B.A., Dynamical Hurst analysis 
identifies EEG channel differences between PTSD and healthy controls. PLOS One (2017, revised under 
review). – pdf file with the revised manuscript is attached.  

We employed a time-dependent Hurst analysis to identify EEG signals (channels or electrodes) that 
differentiate between healthy controls and combat-related PTSD subjects, and can lead to simplified diagnostic 
application of the EEG. Results indicate that F3 electrode may be a useful channel for diagnostic applications 
of Hurst exponents in distinguishing PTSD and healthy subjects.  

7) Yuan, H., Phillips, R., Wong, C.K., Zotev, V., Misaki, M., Wurfel, B.E., Krueger, F., Feldner, M., Bodurka, J. 
Tracking resting state connectivity dynamics in Veterans with PTSD. Neuroimage: Clinical (2017, revised 
under review) – pdf file with the revised manuscript is attached. 

Novel multimodal approach to studty abnormal brain resting state connectivity dynamics in PTSD: novel 
insights from simultaneous EEG and fMRI. This novel analysis approach uses temporal independent EEG 
microstates (EEG-ms) to study PTSD abnormalities in default mode and salience networks activity temporal 
dynamics.  

5.5 EMPLOYMENT, RESEARCH, TRAININGOPPORTUNITIES SUPPORTED BY THIS AWARD 

Laureate institute for Brain Research (LIBR, Tulsa, OK) was the primary research site for all human research 

conducted in this award. The following individuals were involved in conducted research on this award: Drs. 

Jerzy Bodurka (Principal Investigator, LIBR), Vadim Zotev (Co-Investigator (Co-I), LIBR), Masaya Misaki (Co-I, 

http://dx.doi.org/10.1016/j.neuroimage.2016.01.042
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LIBR), Mathew Feldner (Co-I, University of Arkansas (UA), Fayetteville, AK), Frank Krueger (Co-I, George 

Mason University (GMU), Fairfax, VA), Chung-Ki Wong (Post-doctoral fellow, LIBR), Han Yuan (Post-doctoral 

fellow, LIBR); Mathew Mayer MD, (Co-I, psychiatrist, LIBR); Raquel Phillips (B.S., research coordinator, LIBR), 

and Lisa Kinyon (MS, LPC, psychiatric interviewer, LIBR). In addition as part of centralized clinical assessment 

team (see bellow), clinical interviews were conducted by LIBR certified psychiatrists including MDs Brent 

Wurfel, and William Yates. Medical monitor for the study was Michael Dubriwny MD (psychiatrist, Laureate 

Psychiatric Clinic and Hospital, Tulsa, OK). In addition the following graduate students have training 

opportunities to learn about i) PTSD, ii) advance neuroimaging techniques such real-time fMRI neurofeedback, 

iii) multimodal simultaneous EEG-rtfMRI imaging, iv) neuroimaging data analysis: Ahmad Mayeli, Nafise 

Barzigar, Ben Mulyana (master of sciences, graduate students from University of Oklahoma, Tulsa graduate 

college), Bahareh Rahmani, (Ph.D., graduate student from University of Tulsa), Sergey Chernyak (Ph.D. 

graduate student from GMU).      

In addition for the purpose of this award, with LIBR institutional support, i) centralized clinical assessment with 

certified psychiatrists coverage and recruitment infrastructure was established, and expanded; ii) advance 

multimodal brain imaging capabilities were established, expanded and maintained; iii) computing and data 

storage infrastructure were expanded, and maintained. In addition, a new human brain imaging capacity was 

established: a stand-alone 64-channel EEG, galvanic skin-conductance (GSR), respiratory, cardiac waveforms 

recording station and advance computer stimulus delivery system, capable to conduct advance neurofeeback 

experiments. 

The synergy between neuroscientists, psychiatrists, computational neuroscientists, clinical psychologists and 

physicists resulted in development and advances in several data analytic multimodal statistical approaches for 

the data generated. At subcontractor institutions, the partnership has also been very valuable for the work 

being done at the University of Arkansas. Continued research collaboration between Dr. Feldner and the Dr. 

Bodurka’s LIBR research team resulted in new knowledge contributions to understanding PTSD and related 

neurobiological functioning. In addition, it has promoted the education of advanced undergraduate and 

graduate students at the University of Arkansas. Dr. Feldner has disseminated information about the 

neurobiology of PTSD, treatment of combat-related PTSD, and more specifically the rtfMRI-nf procedure 

examined in this project to these groups via lectures and invited presentations to various student groups. 

Similarly, Dr. Feldner has presented portions of this research to the Veterans Healthcare System of the Ozarks 

via annual presentations to the faculty and interns involved in treating PTSD at this local VA. Finally, it has 

continued to influence Dr. Feldner’s research program, by extending his laboratory-based translational work 

that focuses on better understanding PTSD in order to develop enhanced treatments by facilitating adoption of 

increasingly neurobiologically-focused assessments, including the type of EEG-measured prefrontal 

asymmetry examined in this project. Finally collaboration research experiences gained through this award 

contributed to a successful full professorship evaluation of Dr. Feldner who is now Professor, and Director of 

Psychological Clinic at the Department of Psychological Science at the University of Arkansas.  This award 

and collaborations resulted in George Mason University administrative support and improvements to Dr. 

Krueger lab computational infrastructure for help with computationally intense aspects of the award, and 

through collaboration with LIBR and UA helped in development of novel neuroimaging analysis approaches. 

The research, mentor, and collaboration experiences gained through this award contributed to a successful 

tenure-track evaluation of Dr. Krueger who is now an Associate Professor at the School of System Biology at 

GMU. Dr. Krueger has also disseminated information about the neurobiology of, and novel treatment strategies 

for PTSD, via lectures and invited presentations to various student groups. The reward further gave LIBR, UA, 

and GMU more visibility regarding performing cutting-edge research in the field of clinical neuroscience with 
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focus on better understanding pathophysiology of PTSD and researching a novel technology-assisted 

intervention. 

 
6. CONCLUSION  
 
Recruitment of Veterans formed the major challenge for this study, and has resulted in data collection delays 

and two years no-cost extension was necessary to reach most of study goals. During the study, we secured 

substantial institutional support for our very substantial recruitment efforts to further increase our recruitment 

campaign focused on the Veteran population in Oklahoma. Those recruitments efforts (as summarized in this 

report) improved subject enrollment rate and also resulted in raising awareness of combat-related PTSD and 

our research efforts to understand better pathophysiology of this costly disease and our thrust to research 

novel intervention. Although we have not reach intended recruitment targets especially for EEG-only 

neurofeedback (EEG-nf) training, the collected data indicated EEG-nf training feasibility in combat related 

PTSD.   

This research established and showed real-time fMRI-nf emotional training with concurrent EEG recording in a 

combat-related PTSD population. This procedure was tolerated well without any adverse effects. Veterans with 

PTSD can learn to self-regulate their left amygdala (LA) BOLD responses during recall of positive 

autobiographical memories. The rtfMRI-nf training of the left amygdala resulted in statistically and clinical 

significant improvements in PTSD (CAPS, PCL-M) and depression (HRSD) symptoms. Significant reductions 

in PTSD and depression symptoms were seen in Veterans with PTSD in the experimental group who received 

LA feedback but not in controls who received feedback for another brain region not involved in emotion 

regulation.  

Analyses were conducted to examine the effects of the rtfMRI procedure on task response. The main result of 

the present work is the observation of the significant positive correlations between PTSD severity and the LA 

fMRI connectivity enhancement (FCS) for several PFC regions during the rtfMRI-nf training. Results 

demonstrated that rtfMRI-nf of amygdala activity to enhance emotion regulation ability may be beneficial to 

Veterans with combat-related PTSD. Our fMRI and EEG results independently suggest that the rtfMRI-nf 

training has the potential to correct the amygdala-prefrontal cortex (PFC) functional connectivity deficiencies 

specific to PTSD. The most significant PTSD-specific enhancements in fMRI connectivity between the LA and 

the PFC were observed for the lateral orbitofrontal cortex (LOFC) and dorsolateral prefrontal cortex (DLPFC) 

regions, which are parts of the executive function and emotion regulation system. Because activities of these 

cortical regions can be probed using EEG, EEG-nf based on frontal EEG asymmetry in alpha band may 

complement the rtfMRI-nf of the amygdala. Indeed, our results also indicate that the FEA variations associated 

with the rtfMRI-nf training can serve as a measure of treatment response in PTSD, and serves as good 

candidate for the neurofeedback signal for EEG only neurofeedback training. Comparably, training in self-

regulating LA activity during positive autobiographical memory recall with rtfMRI-nf was effective to reduce 

symptoms of PTSD group. Since this effect was significant only for the active group, LA signal feedback was 

more effective than only practicing positive autobiographical memory recall as was done in the sham 

neurofeedback situation. The training effect on LA activity, however, was not seen for all participants. The 

strategy of using rtfMRI-nf to increase LA activity was most effective for subtypes of PTSD patients with a 

hypoactive amygdala response to positive memory recall. While baseline LA activity could predict the training 

effect, symptom relief after the sessions was not associated with LA activity change. This suggests that 

symptom reduction might not be directly mediated by LA activity modulation, but by other regions that are co-

modulated during the training. 
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Analyses were also conducted to examine resting state functional connectivity in PTSD. A connectome-wide 

investigation of resting-state functional connectivity using MDMR suggested decreased connectivity between 

the lateral prefrontal regions and the salience network regions in PTSD, which is consistent with previous 

reports that indicated lowered emotion-regulation function in these regions. Next, comprehensive investigation 

of rtfMRI-nf training effects on resting-state functional connectivity revealed that changes in connectivity were 

observed both in left amygdala connectivity as well as in the supplementary motor area (SMA), anterior 

cingulate cortex (ACC), insula, precuneus, and prefrontal regions. These changes were in the direction of 

normalizing abnormal connectivity for both PTSD and Veterans control (VC) groups. Connectivity increases 

between the SMA and the dACC and between the precuneus and the left superior frontal gyrus were 

associated with a decrease in PTSD symptoms measured by PCL-M and CAPS sub-D, respectively. These 

results indicated that the rtfMRI-nf training effect was not limited to a feedback target region and symptom relief 

could be mediated by brain modulation in several regions other than a feedback target area. Moreover, a multi-

modal analysis of fMRI-derived resting state networks demonstrated that the occurring frequency of EEG 

microstates in the dorsal default mode network (DMN) is higher in PTSD and positively correlated with the 

score of PTSD severity. In contrast, the occurring frequency of the anterior salience network (SN) is lower in 

PTSD and negatively correlated with the score of hedonic tone or degree of pleasantness. These findings 

contribute new information to our understanding neural mechanisms of PTSD, and further suggest that a 

disruption in emotion generation and regulation circuits play a crucial role and contribute to the 

pathophysiology of PTSD. 

In addition, and importantly the rtfMRI-nf left amygdala positive emotional training had a significant treatment 

effect to reduce PTSD symptoms. This symptom reduction was positively associated with the hippocampus 

volume increase, specifically in the CA1 and the parasubiculum regions, such that participants with a greater 

decrease in PTSD symptoms had more increase in the volumes, suggesting recovery from hippocampus 

atrophy specific to PTSD. 

 

Collectively, these results have significantly advanced understanding of the neurobiology of PTSD and offer 

promising targets for real-time EEG neurofeedback-assisted interventions.  
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• A  comprehensive  real-time  fMRI  processing  system  was  demonstrated.
• The  system  includes  intensive  processing  steps  comparable  to off-line  analysis.
• Comprehensive  whole  brain  data  analysis  can  be  done  in  real-time  with  a PC.
• A  number  of available  samples  need  to be considered  in  real-time  GLM.
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a  b  s  t  r  a  c  t

Background:  While  applications  of real-time  functional  magnetic  resonance  imaging  (rtfMRI)  are  growing
rapidly,  there  are  still  limitations  in real-time  data  processing  compared  to  off-line  analysis.
New  methods:  We  developed  a  proof-of-concept  real-time  fMRI processing  (rtfMRIp)  system  utilizing  a
personal computer  (PC) with  a  dedicated  graphic  processing  unit  (GPU)  to demonstrate  that  it  is now
possible  to perform  intensive  whole-brain  fMRI  data  processing  in  real-time.  The  rtfMRIp  performs  slice-
timing correction,  motion  correction,  spatial  smoothing,  signal  scaling,  and  general  linear  model  (GLM)
analysis  with  multiple  noise  regressors  including  physiological  noise  modeled  with  cardiac  (RETROICOR)
and  respiration  volume  per  time  (RVT).
Results:  The  whole-brain  data  analysis  with  more  than  100,000  voxels  and  more  than  250  volumes  is
completed  in  less  than  300  ms,  much  faster  than  the  time  required  to acquire  the  fMRI  volume.  Real-time
processing  implementation  cannot  be  identical  to  off-line  analysis  when  time-course  information  is  used,
such as in  slice-timing  correction,  signal  scaling,  and  GLM.  We  verified  that reduced  slice-timing  correc-
tion  for  real-time  analysis  had comparable  output  with  off-line  analysis.  The  real-time  GLM  analysis,
however,  showed  over-fitting  when  the number  of  sampled  volumes  was  small.
Comparison  with  existing  methods:  Our  system  implemented  real-time  RETROICOR  and  RVT  physiological
noise  corrections  for the first  time  and  it is capable  of  processing  these  steps  on all  available  data  at  a
given  time,  without  need  for recursive  algorithms.
Conclusions:  Comprehensive  data  processing  in  rtfMRI  is possible  with  a PC,  while  the  number  of samples
should  be  considered  in  real-time  GLM.
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1. Introduction

Real-time functional magnetic resonance imaging (rtfMRI), first
introduced by Cox et al. (1995), is a process that uses functional MRI
to evaluate brain activation and displays the processed image while
keeping pace with data acquisition. While applications of rtfMRI
are growing rapidly (Sulzer et al., 2013), there are still limitations
in real-time data processing compared to off-line analysis. One
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limitation is that real-time image processing must be at least as fast
as the time required to acquire and reconstruct a single brain vol-
ume. Another limitation is data availability. In a real-time analysis,
the data sample is incrementally acquired so that processes utiliz-
ing time-course information cannot be the same as those used in
off-line analysis.

Here, we demonstrated that computational time does not limit
real-time processing with a current state-of-the-art personal com-
puter (PC). We  implemented a proof-of-concept rtfMRI processing
(rtfMRIp) system that allows comprehensive real-time processing
(RTP) on all available data at a given time, including adapted slice-
timing and signal scaling, motion corrections, spatial smoothing,
and RETROICOR (Glover et al., 2000) and RVT (Birn et al., 2008),
the first instance of real-time physiological noise corrections with
general linear model (GLM) analysis. RETROICOR and RVT are com-
putationally intensive physiological noise correction methods that
can evaluate variable noise effect voxel-wise, which is more flexible
than global signal or white matter and cerebrospinal fluid average
signal regression. Here we showed that they could be done in real
time. We  also verified that time-course analyses in slice-timing cor-
rection adapted for real-time processing could output comparable
results with off-line analysis. The limitation in rtfMRIp was GLM
analysis with a small number of samples. The more noise regressors
used for correction, the longer we needed to wait before obtaining
a reliable brain activation estimate.

2. Method

2.1. Real-time fMRI processing system (rtfMRIp)

The rtfMRIp system was implemented on a General Electric
MR750 3 Tesla MRI  scanner equipped with a custom-developed
real-time fMRI system (Bodurka and Bandettini, 2008). See
Supplementary Fig. 1 for detailed system configuration. The RTP
software was written in C code as an extension of an existing real-
time plugin for AFNI (Cox, 1996) and runs on a Linux (Ubuntu
12.04) real-time processing (RP) computer (dual Intel Xeon (E5-
2670) CPUs (8 cores), 128 GB RAM, and an NVIDIA Tesla K20X
GPU with 2688 cores and 6 GB memory). The GPU was  used only
in the GLM analysis. The original real-time plugin features real-
time image communication, motion correction, and data saving
functions. We  extended plugin functionalities by adding multi-
threading to run multiple image processing tasks including slice
timing, motion corrections, spatial smoothing, signal scaling, and
regression with motion, slow drift, and physiological noise correc-
tions. Cardiac waveforms were measured with a pulse oximeter,
and respiration signal was measured with a pneumatic belt. Samp-
ling rate of these signals was 200 Hz, which was down-sampled to
40 Hz by averaging five consecutive samples to reduce noise.

2.2. Real-time processing (RTP)

The initial few volumes are ignored to allow fMRI signal to reach
a steady state. First, the slice-timing correction was performed by
interpolating and resampling the time-course data at shifted time
points. In the off-line analysis, either spline, Fourier, or Sinc interpo-
lation is used. In RTP, however, available data points are restricted
to past and current time, so high-order interpolation cannot be
used. For RTP adaptation, we used resampling with linear and cubic
interpolation. The linear method uses only the current and one
past data points to interpolate, so it can be applied in RTP without
modification. Cubic interpolation uses two points from the past,
the current, and one future point to interpolate. We  introduced
a pseudo future point with the same value as the current one to
perform the cubic interpolation. After the slice-timing correction,

volume registration and spatial smoothing were performed. We
used the same code that was implemented in the original AFNI
source code.

Voxel-wise signal normalization by converting each signal time
course to the percent change relative to average signal was applied
to the smoothed image. To normalize the signal, we used a fixed
number of initial volumes to estimate the average signal, and this
initial average is used for scaling all the subsequent time points. The
number of volumes to wait before estimating the average is equal
to the number of regressors in the GLM analysis. Since the GLM
analysis requires a larger number of samples than the number of
regressors, regression can only start once a sufficient number of
samples have been acquired.

Once enough data had been acquired, the GLM analysis was  per-
formed. Polynomial regressors, 12 motion parameters (shift in x, y,
and z directions, yaw, roll, and pitch rotations and their temporal
derivatives), 8 RETROICOR (4 Fourier series basis functions each
for cardiac and respiration) (Glover et al., 2000), and 5 RVT (Birn
et al., 2008) regressors were included in the design matrix. The
RETROICOR and RVT calculation was implemented in C (based on
the AFNI’s RetroTS.m MATLAB script). The RetroTS function read
cardiac and respiration signal recorded since the start of the scan
and calculated 4 cardiac and 4 respiration RETROICOR regressors.
The phase of these regressors corresponded to the sample time
of the first slice (the aligned time in the slice timing correction).
Additionally 5 RVT regressors were also computed.

Every time a new volume was received, the data was incremen-
tally copied to a pre-assigned memory location. The regressors of
the motion parameters were also incrementally added. Updates of
the RETROICOR, RVT, and polynomial regressors were not incre-
mental, but all the vectors were re-calculated at every volume.
Since the RETROICOR and RVT processes include frequency anal-
ysis for noise reduction and extracting peak points, recalculating
whole estimates with an increased number of samples can improve
the estimate of the regressor. This update, however, disables the
use of the recursive regression method (Bagarinao et al., 2003)
because the design matrix for the past data was changed. Recursive
regression is useful to reduce computational time, but the cur-
rent implementation demonstrated that computational time did
not restrict running a full GLM analysis. The polynomial order was
determined by the length of scan at the time of the regression. The
order of the polynomial is calculated as 1 + int(d/150), where d is
the scan duration in seconds (default in AFNI’s 3dDecovlove). All
the column vectors in the design matrix were normalized to unit
variance at every update.

The GLM analysis was  performed using the quadratic least
square (QLS) solving (SGELS) routine in LAPACK (Linear Algebra
Package). This routine solves the Y = BX equation to find B while
minimizing the squared difference between Y and BX.  We  used
the Intel Math Kernel Library (Intel® Math Kernel Library 11.0) for
solving this on the CPU and CULA (Humphrey et al., 2010) on the
GPU. These high performance libraries enabled fast computation
for large-scale data composed of whole-brain voxels. The QLS solu-
tion (beta value) was used to regress out the noise components to
obtain the residual volume, r = y − Bx.  While the entire history of
the collected data is used to run the regression analysis, the resid-
ual volume was  calculated only for the current volume since only
the current estimate of brain activation is needed in a real-time
application.

2.3. System evaluation

We  used resting-state fMRI data (14 healthy subjects) from a
previous study (Zotev et al., 2011) for evaluating the developed
rtfMRIp system. The gradient-echo EPI data were acquired in a
resting-state session with eyes open and fixated on a cross on
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the screen (TR/TE = 2000/30 ms,  flip angle = 90◦, SENSE accelera-
tion = 2, 34 axial slices, FOV = 240 mm,  96 × 96 matrix reconstructed
to 128 × 128 resulting in 1.9 × 1.9 × 2.9 mm3 voxel volume, and
263 volumes). The fMRI data of this scan, and corresponding car-
diac and respiratory signals, were fed to the rtfMRIp using Dimon
software to simulate an experimental session. We  also evalu-
ated the rtfMRIp system during actual fMRI scanning (same MRI
scanner, same EPI parameters except the number of slices = 41
and 225 volumes). Eight healthy volunteers (age 21–32 years, 5
females) performed a resting-state scan. The study was  approved
by the Western IRB and the subjects gave informed consent to par-
ticipate.

Processing time was calculated from when the system received
a volume to when the processed volume was saved on a disk,
which did not include the time of image reconstruction on the scan-
ner or data transfer from the MRI  host computer to the real-time
processing computer (less than 1 s). In the simulation, the compu-
tation time evaluation was performed with and without using the
GPU for GLM analysis. In the actual experiment, four subjects were
processed with the GPU and the other four subjects were processed
without the GPU.

Comparison between the real-time image processing and the
off-line data analysis was performed for the slice-timing correction,
signal scaling, and GLM analysis. Only the simulated experiment
data were used in these evaluations to test multiple settings of
real-time analysis. For the slice-timing correction, on-line linear
and cubic corrections were compared with off-line Fourier correc-
tion. AFNI’s 3dTshift command was used for the off-line analysis.
For the signal scaling, we evaluated how quickly the temporal aver-
age converged during a scan using correlation between the spatial
patterns of the average up to each time and the average of all time
points.

For the GLM analysis, output of real-time GLM analysis was com-
pared with that of off-line analysis using AFNI tools. In the off-line
analysis, slice-timing correction was applied with 3dTshift with the
Fourier method. Motion correction was done by registering vol-
umes to the first volume. Smoothing with a 4 mm-FWHM Gaussian
kernel was applied to the registered images. The signal values were
scaled to percent change relative to the mean across time in each
voxel. Twelve motion parameters (shift in x, y, and z directions;
yaw, roll, and pitch rotations; and their temporal derivatives), 8
RETROICOR (4 basis functions each for cardiac and respiration),
5 RVT, and 4th-order polynomial regressors were included in the
design matrix of the regression analysis. We  used 3dREMLfit for the
GLM in the off-line analysis. This command performed autocorrela-
tion noise correction, which was not implemented in the real-time
processing. The real-time processing used the same parameters as
in the off-line analysis except for the slice-timing correction, signal
scaling, and regression. On-line cubic interpolation was used for
the real-time slice-timing correction in this evaluation.

3. Results

3.1. Processing time

Fig. 1 shows image processing time on the RP computer for the
simulated real-time experiment (left) and for the actual real-time
experiment (right). Regression analysis began at 27th volume. The
graph shows mean processing time (bold lines) and standard error
of mean across subjects (thin lines). The processing time for the
first (27th) and the last volumes were excluded from the plot since
they took an extra-long time due to initialization and closing pro-
cesses. The mean number of voxels within the mask was  105,394
(SD = 7308) for the simulation dataset, 129,561 (SD = 9693) for the

real-time experiment without GPU, and 132,956 (SD = 21,809) for
the real-time experiment with GPU.

3.2. Comparisons with off-line processing

Mean correlation coefficients between the output of the real-
time and off-line (FFT interpolation) slice-timing corrections across
subjects in each slice were calculated for both linear and cubic real-
time interpolations. Even at the longest interpolation size (1.0 s),
the mean correlation was  higher than 0.95 (Supplementary Fig. 2),
and cubic interpolation showed slightly better correlation with the
off-line FFT processing than linear interpolation, though the differ-
ence was not significant. Regarding the scaling factor, we noted that
correlation between the spatial pattern scaled by average until the
time of each volume in real-time and that scaled by average of all
volumes slowly converged with time (Supplementary Fig. 3).

Fig. 2A shows the correlation between the outputs of the
real-time and off-line processing after the regression. Thirteen
RETROICOR and RVT regressors and 12 motion regressors were
included in the regression. The red line is drawn by fitting a func-
tion; y = a(1 − exp(−(t − b)/�)), where t is the number of volumes,
b is a shift of time, � is a time constant, and a is a scaling factor.
Fig. 2B shows the signal standard deviation within a brain in the
real-time processed output. The small standard deviation of the
residual image at early volumes indicates that over-fitting hap-
pened due to there being an insufficient number of samples to
fit multiple regressors. The time course of standard deviation was
similar to that of the correlation between the real-time and off-line
processing outputs, suggesting that over-fitting made the output of
the real-time processing less reliable compared to the off-line anal-
ysis. The same analysis was performed with the fewer regressors by
excluding physiological noise regressors (Fig. 2C and D) and further
excluding the six motion derivative regressors (Fig. 2E and F). Using
fewer regressors shortened the time to converge the correlation
between the real-time and off-line outputs.

4. Discussion

We have developed a proof-of-concept real-time fMRI
processing system (rtfMRIp) and showed that computation-
ally intensive fMRI processing could be done in real time with
a PC equipped with a dedicated GPU. Current rtfMRIp imple-
mentation includes slice-timing correction, motion correction,
spatial smoothing, signal scaling, and GLM analysis with motion
parameters, polynomial regressors, and the first real-time imple-
mentation of physiological noise correction with RETROICOR and
RVT regressors. These processing steps could be completed in less
than 300 ms  with more than 250 volumes for a whole brain with
more than 100,000 voxels. While this is the first demonstration of
intensive real-time fMRI data processing comparable to off-line
analysis, computation time will no longer be a prohibitive factor in
the further development of rtfMRIp capabilities in the near future.

Aside from computation time, RTP requires several different
approaches compared to off-line processing in time-course data
analysis. For slice-timing correction, reduced alternative meth-
ods for real-time processing could output comparable results with
off-line processing. We  note that performance of low-order inter-
polation in the slice-timing correction depends on the length of
TR, and this correction might not be necessary for a short TR. Nev-
ertheless, we included this process to demonstrate that it could
be implemented in rtfMRIp if necessary. For signal scaling, spatial
pattern of scaled signal in real time was not the same as in off-line
analysis due to the difference of scaling factor. This could be critical
when a multi-voxel pattern analysis (MVPA) is used for neurofeed-
back. Another normalization (e.g. Lee et al., 2015) should be applied
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A B

Fig. 1. Computation time of real-time image processing without GPU (CPU: blue lines) and with GPU (red lines) for the regressions. The bold lines and thin lines indicate
mean  processing time and its standard error across subjects, respectively. (For interpretation of the references to color in text, the reader is referred to the web version of
this  article.)

Fig. 2. (A) Comparisons between the real-time processed image and off-line processed image after the GLM analysis. The thick black line shows mean correlation between the
real-time and off-line processed images at each volume, and the thin blue lines show standard error. The red line shows a fitted function line. The dotted vertical line indicates
the  time point where the fitted line reached 80% of the correlation at the last volume. (B) Time course of signal standard deviation within a brain in the real-time processed
image. Conventions are the same as A. (C and D) Same plot as A and B excluding RETROICOR and RVT regressors. (E and F) Same plot as A and B excluding RETROICOR, RVT,
and  motion derivative regressors. (For interpretation of the references to color in text, the reader is referred to the web version of this article.)

when MVPA is used in real time. We  also note that the scaling does
not affect the temporal pattern of signal change. Since updating the
scaling factor at every volume could induce artificial signal fluctua-
tion in the scaled time course, a fixed scaling factor should be used
when a voxel-wise analysis is used.

For the GLM analysis, certain number of samples must be col-
lected for the RTP output to converge, and time to converge was
longer when a larger number of noise regressors were used. We
do not have a fundamental solution for the problem of GLM con-
vergence time other than simply waiting. This could limit an rtfMRI

application, for example in a neurofeedback experiment. If one used
a simple block design and brain activation is assumed to be large
enough compared to noise, there is no need to include many noise
regressors and neurofeedback could be started earlier. However, if
one wants to use functional connectivity for a neurofeedback signal,
physiological noise suppression should be included in RTP, result-
ing in a longer wait time before a reliable estimation of functional
connectivity (with better noise suppression) is available. One must
carefully balance the trade-off between thorough noise correction
and early availability of neurofeedback signal.
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We  note that the presented system is neither necessarily an
optimal implementation of rtfRMIp nor the aim of this report to
propose a computationally optimal implementation. Rather, we
aim to demonstrate that modern PC technology has already given us
the freedom to implement computationally intensive processing.
Hinds et al. (2011) have already presented a similar approach for
rtfMRIp, in which the noise model was regressed out from fMRI
data by incremental GLM analysis. They, however, did not imple-
ment slice-timing correction, signal scaling, or spatial smoothing
and the processed region was restricted to within an ROI. Our sys-
tem implemented all of these processing steps for whole-brain
data, in addition to real-time implementation of RETROICOR and
RVT physiological noise correction. Such comprehensive real-time
fMRI analysis has not been demonstrated before. Our results indi-
cated that this computationally heavy processing can be realized
in real-time fMRI even without a supercomputer facility but with
a commonly available PC.

The current report focused on real-time fMRI image processing
before showing a feedback signal. An application of our system
to neurofeedback experiment was demonstrated in Misaki et al.
(2015). While processing step selection could vary depending on
the purpose of experiment, we showed that multi-step and com-
putationally intense the whole-brain fMRI preprocessing, including
GLM analysis, can now be conducted with all available data at
a given time, in real time. The current results will increase the
possibility of rtfMRI application, such as feedback of connectiv-
ity measures, which requires physiological noise correction, and
MVPA, which requires whole brain signal to evaluate feedback
signal.
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Head motions during functional magnetic resonance imaging (fMRI) impair fMRI data quality and introduce
systematic artifacts that can affect interpretation of fMRI results. Electroencephalography (EEG) recordings per-
formed simultaneously with fMRI provide high-temporal-resolution information about ongoing brain activity as
well as head movements. Recently, an EEG-assisted retrospective motion correction (E-REMCOR) method was
introduced. E-REMCOR utilizes EEG motion artifacts to correct the effects of head movements in simultaneously
acquired fMRI data on a slice-by-slice basis. While E-REMCOR is an efficient motion correction approach, it in-
volves an independent component analysis (ICA) of the EEG data and identification of motion-related ICs. Here
we report an automated implementation of E-REMCOR, referred to as aE-REMCOR, which we developed to facil-
itate the application of E-REMCOR in large-scale EEG-fMRI studies. The aE-REMCOR algorithm, implemented in
MATLAB, enables an automated preprocessing of the EEG data, an ICA decomposition, and, importantly, an auto-
matic identification ofmotion-related ICs. aE-REMCORhas been used to perform retrospectivemotion correction
for 305 fMRI datasets from 16 subjects, who participated in EEG-fMRI experiments conducted on a 3 TMRI scan-
ner. Performance of aE-REMCOR has been evaluated based on improvement in temporal signal-to-noise ratio
(TSNR) of the fMRI data, as well as correction efficiency defined in terms of spike reduction in fMRI motion pa-
rameters. The results show that aE-REMCOR is capable of substantially reducing head motion artifacts in fMRI
data. In particular, when there are significant rapid headmovements during the scan, a large TSNR improvement
and high correction efficiency can be achieved. Depending on a subject's motion, an average TSNR improvement
over the brain upon the application of aE-REMCOR can be as high as 27%, with top ten percent of the TSNR im-
provement values exceeding 55%. The average correction efficiency over the 305 fMRI scans is 18% and the largest
achieved efficiency is 71%. The utility of aE-REMCOR on the resting state fMRI connectivity of the default mode
network is also examined. The motion-induced position-dependent error in the DMN connectivity analysis is
shown to be reduced when aE-REMCOR is utilized. These results demonstrate that aE-REMCOR can be conve-
niently and efficiently used to improve fMRI motion correction in large clinical EEG-fMRI studies.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Head motion has been recognized as a major source of artifacts in
fMRI data since early days of fMRI (e.g. Cox and Hyde, 1997; Friston
et al., 1995, 1996; Hajnal et al., 1994; Jiang et al., 1995). In task fMRI,
motion-induced artifacts often correlate with experimental tasks
(Hajnal et al., 1994), leading to inaccurate estimates of BOLD activity
levels and reduced significance of fMRI findings. This issue is particular-
ly important for frontal and prefrontal brain regions that usually exhibit
the largest motions. In resting-state fMRI, head movements introduce

systematic changes in estimated fMRI functional connectivity strength
across the brain (Power et al., 2012; VanDijk et al., 2012). Such spurious
changes can lead to incorrect interpretations of the functional connec-
tivity results on the group level if the data is ineffectively preprocessed
(Power et al., 2012; Saad et al., 2013; Gotts et al., 2013; Jo et al., 2013).
The traditional fMRI motion correction approach bases on spatial co-
registration of 3D fMRI volumes (e.g. Friston et al., 1995; Cox and
Jesmanowicz, 1999). Despiking at the beginning of the preprocessing
pipeline further attenuates the fMRI motion effect (Jo et al., 2013;
Satterthwaite et al., 2013). The traditional approach implicitly assumes
that all motion occurs between the volume acquisitions (Cox and Hyde,
1997). Thus, it cannot adequately take into account effects of faster
intra-volumemovements (Beall and Lowe, 2014). It has been suggested
that a slice-based fMRI motion correction can be superior to the

NeuroImage 129 (2016) 133–147

⁎ Corresponding author at: Laureate Institute for Brain Research, Tulsa, OK, USA.
E-mail address: jbodurka@laureateinstitute.org (J. Bodurka).

http://dx.doi.org/10.1016/j.neuroimage.2016.01.042
1053-8119/© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r .com/ locate /yn img

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2016.01.042&domain=pdf
mailto:jbodurka@laureateinstitute.org
http://dx.doi.org/10.1016/j.neuroimage.2016.01.042
www.elsevier.com/locate/ynimg


traditional volume registration approach (Beall and Lowe, 2014;
Zotev et al., 2012).

Multimodal brain imaging, combining fMRI with simultaneous EEG
recordings (e.g. Mulert and Lemieux, 2010), offers new exciting oppor-
tunities for fMRI motion correction. Simultaneous EEG-fMRI combines
the advantages of the high temporal resolution of EEG and the high spa-
tial resolution of fMRI. While the artifact on the fMRI data can be mini-
mized with the use of MR-compatible EEG system, introduction of fMRI
environment related artifacts to the EEG data is inevitable. In particular,
cardioballistic and motion artifacts are exacerbated inside an MR scan-
ner. These artifacts can be reduced with designated hardware setup
(Bonmassar et al., 2002; Masterton et al., 2007), or corrected effectively
by independent component analysis (Srivastava et al., 2005; Mantini
et al., 2007).

Recently, we introduced a method for EEG-assisted retrospective
motion correction of fMRI data (E-REMCOR) that employs the EEG
array as a sensitive motion detector in addition to recording neuronal
activity (Zotev et al., 2012). In this method, voltage artifacts induced
in the EEG array leads due to head motion in a strong uniform mag-
netic field of an MRI scanner are used to define regressors describing
rotational head movements with millisecond temporal resolution.
E-REMCOR makes it possible to regress out the effects of rapid head
movements from unprocessed fMRI data on a slice-by-slice basis
prior to volume registration. Thus, E-REMCOR complements both the
traditional fMRI volume registration approach, which performs better
for slower head motions, and the RETROICOR method for slice-specific
correction of fMRI cardiorespiratory artifacts (Glover et al., 2000).
E-REMCOR does not require any specialized equipment (beyond the

EEG-fMRI instrumentation) and can be applied retrospectively to any
existing EEG-fMRI dataset.

Application of E-REMCOR involves an independent component anal-
ysis (ICA) of EEG data and identification of independent components
(ICs) corresponding to different head motions. This process requires a
close examination of the EEG recordings and a careful evaluation of
the IC properties. Therefore, an automation of E-REMCOR to enable a ro-
bust and efficient motion correction without human supervision is
desirable. In this paper, we describe such an automation extension of
E-REMCOR, which we refer to as aE-REMCOR. We explicitly detail the
quantitative criteria that effectively distinguish the different motion
ICs. We also evaluate its performance for a large number of EEG-fMRI
datasets. An improved automatic fMRI motion correction afforded by
aE-REMCOR would provide an additional incentive for recording EEG
during fMRI, and thus encourage a broader use of simultaneous EEG-
fMRI. It would also greatly benefit large clinical studies by improving
fMRI data quality and reducing numbers of subjects excluded due to
excessive motion.

2. Methods

2.1. E-REMCOR

The aE-REMCOR method is an automation extension of E-REMCOR.
E-REMCOR is based on the observation that voltage artifacts
(electromotive force, EMF) induced in EEG leads due to rigid-body
movements of the head in the uniformmagnetic field of anMRI scanner
can be analytically related to time derivatives of real-time rotational
head motion parameters (Zotev et al., 2012). Definition of the high-
temporal-resolution E-REMCOR regressors is independent of the fMRI
pulse sequence properties. The MR artifacts are removed from the EEG
data bymeans of the average artifact subtraction (Allen et al., 2000) be-
fore the EEG data are used for E-REMCOR.

Application of E-REMCOR for fMRI motion correction includes three
steps. First, an independent component analysis (ICA, e.g. Bell and
Sejnowski, 1995; Makeig et al., 1997) is performed for the EEG data:

Vi tð Þ ¼
XN
j¼1

bij F j tð Þ þ εi tð Þ; i ¼ 1:::N: ð1Þ

Here, {Vi(t)} are signals from N EEG channels, {Fj(t)} are the corre-
sponding independent components (ICs), {bij} are elements of the ICA
back-projection matrix, and εi(t) is an error term also including the
ith-channel's Gaussian noise The ICs Fk(t), k = 1...K, approximating
random-motion and/or cardioballistic (CB) artifacts VEMF

(i) (t) are

V ið Þ
EMF tð Þ≈

XK
k¼1

bik Fk tð Þ; i ¼ 1:::N;K ≤N: ð2Þ

The identification criteria for the random head motion are outlined
in Zotev et al., 2012. The quantitative classification of the criteria for
the random head motion, together with the cardioballistic motions
caused by cardiac pulsations, will be detailed in the following sections.

Second, eachmotion-related IC Fk(t) is band-pass filtered from 0.1 to
20 Hz and integrated over time (with constant Δt= 0.4 s) to yield two
E-REMCOR regressors, R1

(k)(t) and R2
(k)(t), having the same temporal

Fig. 1. The sketch of the automatic identification of ICs through the analyses of the mean
power spectral density, topographic map, and contribution to the EEG signal. Possible
blink and saccade ICs are removed from the motion ICs selection.

Fig. 2. (a)–(f) The mean power spectral density of (a) a rapid head movement IC; (b) a cardioballistic motion IC; (c) a mixture of cardioballistic motion and rapid head movement IC;
(d) another rapid head movement IC with reflection points in the RM range; (e) a blink IC; (f) a saccade IC. (g)–(h): The rises of peaks B and E in (c) from their neighboring left and
right minima when the neighboring right minimum is below 8 Hz. (i)–(j): The rises of the NR peaks G and K in (c) and (e). (k): The rise of the reflection points in (d). In (a)–(f), S0 is
the difference between the maximum and minimum spectrum power below 4 Hz. Motion frequency range (MO) refers to the combined frequency range of RM and CB. RM, CB and
MO peaks stand for the peaks found in the RM, CB and MO frequency ranges respectively. In (g)–(h), the peak rise is defined as the average of the left and right rises. In (i), the peak
rise is the power difference between the peak G and the minimum between F and G. In (j), the peak rise is the power difference between the peak K and the minimum value
between J and K. In (k), the rise of the reflection point H is the power difference between H and I, and the rise of the reflection point I is the power difference between I and
S(v = 4.5 Hz).
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resolution as the EEG data:

R kð Þ
1 tð Þ ¼

Z t

t−Δt

Fk τð Þdτ; and R kð Þ
2 tð Þ ¼

Zt−Δt

0

Fk τð Þdτ: ð3Þ

Third, the E-REMCOR regressors are sub-sampled tomatch the acqui-
sition times {ts} for each slice in the fMRI dataset and linearly detrended.
Correction of motion artifacts in the unprocessed fMRI data is performed
bymeans of a linear regression procedure (with fit coefficients {β} and a
linear regressor RL) applied to each fMRI voxel's time course:

SfMRI tsð Þ ¼ β0 þ β1RL tsð Þ þ
XK
k¼1

βk1R
kð Þ
1 tsð Þ þ βk2R

kð Þ
2 tsð Þ

h i
þ ε tsð Þ: ð4Þ

Thus, the E-REMCOR motion correction is performed on a slice-by-
slice basis, and can be applied simultaneously with RETROICOR. It is
usually followed by the standard fMRI data processing with slice-time
adjustment and volume registration to correct effects of slower head
motions.

The purpose of aE-REMCOR is to automate and streamline the prac-
tical use of E-REMCOR for large datasets and/or groups of subjects.
We developed an advanced algorithm for automatic identification of
motion-related ICs, Eq. (2). The algorithm automatically characterizes
and recognizes the special features of the motion artifacts imposed on
themean power spectral density, topographic map, and EEG signal con-
tribution of the ICs as described in detail below. In the previous work,
the motion ICs were prepared with Brain Products, GmbH's Analyzer 2
proprietary software. The current automation procedure is imple-
mented in MATLAB, together with the MR artifact removal, the ICA
decomposition, and the IC integration, Eq. (3). The final motion correc-
tion step, Eq. (4), is performed for fMRI data in AFNI (Cox, 1996; Cox and
Hyde, 1997) using the 3dTfitter AFNI program.

2.2. Data acquisition

The studywas conducted at the Laureate Institute for Brain Research.
The research protocol was approved by the Western Institutional
Review Board (IRB). Eleven PTSD patients and five healthy controls
(mean age 31 ± 8 years, all male) participated in the study. The study
included three EEG-fMRI scanning sessions. Each session lasted for
about two hours and was separated approximately one week apart. In
each session, there were five real time fMRI neurofeedback (rtfMRI-nf)
training scans (Zotev et al., 2011) and two resting scans immediately be-
fore and after the rtfMRI-nf training scans. In this study, the scans with
missing fMRI slice markers, or mismatched EEG and fMRI scan numbers
were not considered, giving a total of 305 scans in the analysis,which in-
cludes 219 rtfMRI-nf training scans and 86 resting scans.

The experimental procedure and data acquisition parameters were
the same as described in Zotev et al., 2012. The EEG-fMRI experiments
were conducted on a GE Discovery MR750 3 TMRI scanner with a stan-
dard 8-channel receive-only head coil. A single-shot gradient-echo EPI
sequence with Sensitivity Encoding (SENSE) was employed for fMRI.
The following EPI imaging parameters were used: repetition time
TR = 2000 ms, echo time TE = 30 ms, FOV = 240 mm, 34 axial slices
per volume, slice thickness = 2.9 mm, slice gap = 0.5 mm, 96 × 96 ac-
quisitionmatrix, SENSE acceleration factor R=2, flip angle=90o, sam-
pling bandwidth = 250 kHz. Each fMRI run lasted 8 min 46 s. Three
EPI volumes (6 s) were excluded from the data analysis to allow the
fMRI signal to reach steady state. The EPI images were reconstructed
into a 128 × 128 matrix, so the resulting fMRI voxel size was 1.875 ×
1.875 × 2.9 mm3. Physiological pulse oximetry and respiration wave-
forms were also simultaneously acquired with fMRI. The EEG record-
ings were performed simultaneously with fMRI using a 32-channel
MR-compatible EEG system fromBrain Products GmbH. The EEG signals

were acquired with 16-bit 5 kS/s sampling providing 0.2 ms temporal
and 0.1 μVmeasurement resolution. The signalsweremeasured relative
to the standard reference (FCz) and were hardware-filtered between
0.016 Hz (10 s time constant) and 250 Hz during the acquisition.

2.3. EEG preprocessing and ICA

The EEG data, together with the information about event markers
and MRI slice markers, are loaded in MATLAB using the EEGLAB
(Delorme and Makeig, 2004) command pop_loadbv(). The MRI slice
markers are used to label the time period of the concurrent EEG and
fMRI measurements. Because the MR artifacts are strictly periodic
with the fMRI repetition time TR, they are efficiently removed from
the EEG data using the average artifact subtraction. The EEG data are
then low-pass filtered at 40Hz and downsampled to 250 S/s (4ms sam-
pling interval). Band-rejection filters (1 Hz bandwidth) are applied to
remove harmonics of the fMRI slice selection frequency, 17 Hz, as well
as the AC power line artifact at 60 Hz, and a vibration artifact at 26 Hz.

The ICA is performed on the preprocessed EEG data using the
Informax algorithm (Bell and Sejnowski, 1995) implemented in
EEGLAB (binica, Delorme and Makeig, 2004) to separate 31 ICs for
N=31 EEG channels. The ICs related to headmotions, Eq. (2), are iden-
tified automatically. The selected ICs are bandpass filtered from 0.1 to
20 Hz to exclude both the slowly and fast varying contributions that
may be unrelated to head motion (such as EEG instrumentation drifts).
The ICs are then used to define E-REMCOR regressors, Eq. (3).

2.4. Automatic identification of motion ICs

In aE-REMCOR, the ICs corresponding to headmotions are identified
automatically. An IC is recognized as motion-related if its mean power
spectral density, topographic map, and contribution to the EEG signal
manifest certain features that are generally observed for motion ICs.
Note that our original work on E-REMCOR focused on correction of arti-
facts corresponding to randomheadmovements so CB artifactswere re-
moved from the EEG data using the average artifact subtraction (Allen
et al., 1998). In the present paper, the CB artifacts are included in
the analysis together with the random-motion artifacts. The reason is
that a certain type of head motion can contribute to both random and
cardioballistic headmovements, so the two kinds of artifacts are not en-
tirely independent andmay be hard to separate (Zotev et al., 2012). The
inclusion of CB artifacts makes the E-REMCOR procedure more flexible,
but it does not, in general, eliminate the need for RETROICOR.

The aE-REMCOR automation algorithm is illustrated in Fig. 1. ICs re-
lated to rapid head motion and cardioballistic motions are recognized
when the criteria in the analyses of mean power spectral density, topo-
graphic map, and EEG signal contribution are simultaneously satisfied.
Eye blink ICs and saccadic ICs are also identified in addition to the
head motion ICs to ensure proper separation of head movement and
eye movement artifacts. The IC classification parameters used in this
paper are determined empirically across 305 EEG-fMRI scans from 16
subjects. The three sections below describe the quantification of the
characteristics and the identification of themotion ICs through the anal-
yses of mean power spectral density (Section 2.5), topographic map
(Section 2.6), and EEG signal contribution (Section 2.7).

2.5. Motion IC identification through power spectral density analysis

To better understand the physical origins of the ICs, themean power
spectral density of each IC is analyzed. In aE-REMCOR, the mean power
spectral density (S) is computed using the MATLAB function pwelch()
over time windows of 2.048 s length with 1.024 s overlap (512 and
256 data points with 4 ms sampling). The spectral resolution (Δν) is
0.244Hz. Fig.2 shows some typical spectra for the ICs related tomotions,
blink and saccade. Geometrically, the spectrumhas a negative convexity
feature at frequency ν when its second derivative at ν is less than zero
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(S″(ν) b 0). For the mean power spectral density of the ICs corre-
sponding to rapid head movement, it is observed for the frequency
range of 0.5–4.5 Hz that there is either a spectral peak or a negative
convexity feature without a spectral peak. For the ICs corresponding
to the cardioballistic (CB) motions, obvious spectral peaks are observed
in 2–7Hz part of the spectrum. To categorize the physical origin of an IC,
the spectrum is divided into different frequency ranges (Figs. 2(a)–(f)):
rapid head movement (RM: 0.5–4.5 Hz), cardioballistic motion (CB: 2–

7 Hz), blink and saccade (BS: 0.5–3 Hz), and neuronal alpha activity
(NR: 8–12 Hz). The BS and NR frequency ranges are examined so that
possible blink and saccade ICs, as well as ICs corresponding to EEG
alpha activity, can be identified and excluded from themotion IC candi-
dates. The spectrum beyond 12 Hz is not considered in the analysis.
Technical details of the automatic analysis of IC spectra are described
in the Supplementary materials (Section S1, Tables S1–S3).

Fig. 3. The topographical maps for (a) the IC corresponding to rapid headmovement in Fig. 2(a); (b) the ICmixture of rapid headmovement and cardioballisticmotion in Fig. 2(c); (c) the
blink IC in Fig. 2(e); (d) the saccade IC in Fig. 2(f); (e) the example of a non-motion cardiac–related IC. The map boundary with width 0.2 is marked with magenta lines. In (a)–(e), the
primary polarity regions (|g(r)| N K) are enclosed in black solid lines and the geometrical centers are marked with white crosses. The secondary polarity regions (|g(r)| N K′) are
enclosed in black dotted lines and the centers are marked with gray dots. Here (K, K′) = (0.3, 0.1) are the threshold values. (f)–(j) plot the primary polarity regions of
(a)–(e) explicitly with the geometrical centers marked as x±. (k)–(o) plot the secondary polarity regions of (a)–(e) explicitly with the geometrical centers marked as x±′.
(p)–(q) show the primary polarity regions around the positions of the nose in (c) and E± in (d) respectively. The points E± are defined at a distance 0.9 from the origin and at an
angle 35° from the vertical line joining the origin and the nose. (r)–(s) show the central regions enclosed in white solid lines around the positions of the nose in (c) and E± in (d).
(f)–(g) and (k)–(l) are utilized in the identification of motion ICs. (p)–(s) are utilized in the blink and saccade ICs identification. In (r), the two angles θlim″ = 10° from the horizontal
line are the extension limit of the central region in the topography of a blink IC. Other symbols are defined in Section S2.1.
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2.6. Motion IC identification through topographic map analysis

The spatial projection of an IC contribution onto the EEG channel
space forms the IC topographic map (Fig. 3(a)–(e)). The topographic
map of an IC is computed by spatially interpolating the corresponding
column of the ICA back-projection matrix {bij} in Eq. (1) using the
MATLAB function griddata(). When the head undergoes a simple
rigid-body rotation in the uniform magnetic field of the MRI scanner,
spurious conductive contours on the opposite sides of the EEG array
typically experience magnetic flux changes of opposite signs, giving bi-
lateral opposite polarities for EEG channels on the opposite sides of the
EEG array (Zotev et al., 2012). In principle, the IC contributions for such
opposite-side EEG channels should be of the same order of magnitude,
so that the topographic map remains bipolar if a sufficiently high mag-
nitude threshold is applied. In practice, bilateral opposite polarities with
asymmetric magnitudes are often observed in an IC mixture of random
and CB motions. Examples of topographic maps for motion ICs with
symmetric and asymmetric magnitudes are shown in Figs. 3(a) and
(b). It should be noted that not all cardiac-related ICs (McMenamin
et al., 2010) can be used for E-REMCOR, but only those that are clearly
cardioballistic in nature. For example, cardiac beats can be accompanied
by deformations of the soft padding underneath the subject's head
causing deformations of the EEG leads for the occipital EEG channels.
The resulting artifacts have periodicity of the cardiac activity and unilat-
eral topography, but their relation to the rigid-body head motion pa-
rameters is indirect and nonlinear. An example of the non-motion
cardiac-related IC is shown in Fig. 3(e).

In aE-REMCOR, topographic maps of various ICs are analyzed auto-
matically with certain requirements for IC polarity regions, including
positions of the polarity regions, minimum region areas and arc region
areas (Fig. 3(f)–(s)). Possible blink or saccade ICs are also identified by

their topographic properties in addition to the motion IC candidates.
Technical details of the automatic analysis of IC topographies are de-
scribed in the Supplementary materials (Section S2, Tables S4–S5).

2.7. Motion IC identification through analysis of EEG signal contribution

Rapid and randomheadmovements produce prominent spikeswith
durations of no less than tens of milliseconds in the EEG signal time
courses, particularly for the electrodes near the edges of the EEG array.
Similar spikes are evident in the time courses of the corresponding
motion-related ICs. Removing the contributions of such motion-related
ICs from the EEG data reduces the spikes significantly. Cardioballistic
(CB) motions also produce signal spikes, which, however, are distrib-
uted more evenly across the EEG signal time course. Removal of the
cardioballistic IC contributions leads to a steady signal reduction at
the CB peak positions. EEG signals without the contribution of a particu-
lar IC, whichwe denote Vi'(t), can be obtained using Eq. (1)with the cor-
responding column of the back-projection matrix {bij} set to zero. The
signal reduction after the removal of a selected IC is thus equal to the
time course of that IC times the spatial projection constant for a given
EEG channel.

In aE-REMCOR, the signal reduction at the i-th electrode (|Vi(t)-
Vi′(t)|) after the removal of a particular IC is evaluated for the time pe-
riods corresponding to rapid head movements and/or cardiac beats.
This approach is illustrated in Fig. 4. To identify a motion IC candidate,
signal reduction criteria should be satisfied for a minimum number of
EEG electrodes located close to the edges of the EEG array. Technical de-
tails of the automatic analysis of IC contributions are described in the
Supplementary materials (Section S3, Tables S6-S8).

Fig. 4. (a) The time course of the rapid head movement IC, F1(t), shown previously in Figs. 2(a) and 3(a). (b) The time course of the signal measured at electrode T7 (VT7(t)). (c)–(d) The
time courses of the signal measured at electrode T7 and T8 before (black) and after (red) the removal of the IC in (a). (e) The time course of the cardioballistic motion IC shown
in Figs. 2(b) and 7(c). (f) The time course of the signal measured at electrode T7 (VT7(t)). (g)–(h) The time courses of the signal measured at electrode T7 and T8 before (black) and
after (red) the removal of the IC in (e). The dotted lines in (a) indicate the time period in (b). In (a), the magenta line segments indicate the time periods when F1(t) is larger (smaller)
than the threshold value F1,0 + 4σF1 (F1,0-4σF1). In (b), the green dashed lines plot the threshold values VT7,0 ± 4σT7. Each magenta line segment (Tk) in (b) represents the
examination time period for the rapid head movement IC when the extremum of VT7(t) during the indicated period in (a) is greater than VT7,0 + 4σT7 or smaller than VT7,0-4σT7. In
(e), cyan and magenta line segments indicate the time periods when F1(t) is larger (smaller) than F1,0 + 0.1σF1 (F1,0–0.1σF1). In (f), the green dashed lines plot the threshold values
VT7,0 ± 4σT7,min(τ = 10 s). Here F1,0, σF1, VT7,0, σVT7 and σT7,min are defined in Eqs.(S4), (S5) and (S7). Each cyan (or magenta) line segment T+,k (T-,k') in (f) indicates the examination
time period for the cardioballistic motion IC when the signal at T7 during the indicated period in (e) is bounded by the threshold values VT7,0 ± 4σT7,min(τ = 10 s).
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2.8. Analysis of aE-REMCOR performance

A set of EEG based motion regressors are constructed by time inte-
grating the selected motion ICs (Eq.(3)). These regressors are utilized
to correct for head movements in the fMRI dataset on a slice-by-slice
basis using AFNI 3dTfitter (Eq.(4)). The correction performance of
aE-REMCOR on the fMRI dataset is examined using temporal signal-
to-noise ratio (TSNR), motion parameters of the brain voxels, and im-
provement in the resting state fMRI (rs-fMRI) connectivity analysis.
The maximum displacements of the voxels for each brain volume, the
root mean square difference between an fMRI volume and the 1st vol-
ume, and the motion parameters (displacements dS, dL, dP in the supe-
rior–inferior, left–right and posterior–anterior directions, and rotation
angles yaw, pitch and roll about the above directions) are estimated

by AFNI 3dvolreg. For each scan, the above motion parameters with
and without aE-REMCOR application are evaluated.

The temporal signal-to-noise ratio of an fMRI image is given by
(Bodurka et al., 2007)

TSNR rð Þ ¼ mean SfMRI r;nð Þ;n ¼ 1;…;NfMRI
� �

=std SfMRI r;nð Þ; n ¼ 1;…;NfMRI
� �

;

ð5Þ

where SfMRI(r,n) is the signal magnitude at the position r in the nth brain
volume of the fMRI dataset, and NfMRI is the total number of the brain
volume. The improvement of the TSNR(r) between the fMRI datasets
with and without aE-REMCOR application (ΔTSNR(r)), and the average

Fig. 5. The automatic results of aE-REMCOR with identified motion ICs in a scan with moderate rapid head movements. (a) The time courses, (b) spectra, (c) topographic maps of the
identified motion IC. (d) The maximum displacement of the voxels (D) for each brain volume. (e) The root mean square difference (rms) between an fMRI volume and the 1st volume.
(f) The rotation angles roll, pitch, yaw and the displacements along the superior (dS), left (dL) and posterior (dP) directions calculated by AFNI 3dvolreg. (g) The ΔTSNR plots on the
slices of the brain along the axial direction without volume registration (upper plot) and with volume registration (lower plot). In (d)–(f), the results with and without aE-REMCOR
are respectively plotted in red and black lines.
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of ΔTSNR(r) over the brain.

ΔTSNRh i ¼ mean ΔTSNR rð Þ; r ∈ whole volume of the brainð Þ ð6Þ

are examined for each scan. To understand the combined effects of
aE-REMCOR and the standard fMRI preprocessing procedure, ΔTSNR
and 〈ΔTSNR〉 are also evaluated with the volume registration using
AFNI 3dvolreg applied to both the original and aE-REMCOR corrected
datasets.

In the rs-fMRI connectivity analysis, we compared the seed-based
(posterior cingulate cortex) default-mode network (DMN) connectivity
results performed with and without aE-REMCOR. When aE-REMCOR
was applied, it was employed before the fMRI preprocessing steps:
slice-timing correction, volume registration, and Talairach coordinate
registration (Talairach and Tournoux, 1998). Then the fMRI data was
spatially blurred to 4-mm FWHM and temporally bandpass filtered
at 0.01–0.08 Hz to reduce the effect of low-frequency drift and high-
frequency noise (Biswal et al., 1995; Lowe et al., 1998). The rs-fMRI
connectivity of the DMN was examined in 86 resting scans using
GLM-based correlation analysis (Friston, 2005; Van Dijk et al., 2010). A
spherical seed ROI with radius 5 mmwas centered at the posterior cin-
gulate cortex (PCC) (Talairach coordinate: (0,−51, 22) (Van Dijk et al.,
2010)). Nuisance covariates included cerebrospinal fluid signal, white
matter signal, and the 6 rigid body motion parameters (dS, dL, dP,
yaw, pitch and roll). We evaluated the correlation and the correlation
difference of the datawith andwithout aE-REMCOR.We also quantified
the correlation changes in medial prefrontal cortex (mPFC: (0, 49, 2)),

lateral parietal cortex (LatPar-L: (−45, −60, 32), LatPar-R: (43, −60,
29)), and hippocampal formation (HF-L: (−22, −19, −15), HF-R:
(22,−19,−15)) of the DMN (Van Dijk et al., 2010).

3. Results

3.1. Automatic identified motion ICs

Figs. 5-7 show the automatic results of aE_REMCOR with identified
motion ICs from scans with examples of moderate, significant and little
rapid head movements respectively. In each figure, the time courses,
spectra, and topographic maps of the selected motion IC, as well as the
motion information acquired with AFNI 3dvolreg and the TSNR im-
provement, are plotted. For the scan shown in Fig. 5, four motion ICs
are identified. The first three ICs are identified as cardioballistic mo-
tion ICs and the fourth is identified as the rapid head movement IC
(Supplementary Table S9). In this scan, the two kinds of motions are
well separated in the selected motion ICs with little mixing of the
other components. However, such a well separation of components is
not always the case with the ICA, especially when there are significant
motions during the scan.

Fig. 6 shows the results from a scanwith significant subjectmotions.
For this scan, five motion ICs are identified. The 1st, 2nd, 4th and 5th IC
(F1(t), F2(t), F4(t), F5(t)) are identified as the rapid head movement
ICs, and the 3rd IC (F3(t)) is identified as the cardioballistic motion IC.
The spectra, and topographic maps of the 1st and 3rd ICs are shown pre-
viously in Figs. 2(a), 3(a) and 2(c), 3(b). The time course of the 1st IC is

Fig. 5 (continued).
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shown in Fig. 4(a). In the time course of F3(t), in addition to the obvious
spikes caused by the rapid head movements, distinct cardiac pulses are
also observed (Fig. 6(h)). Indeed F3(t) is a significant mixture
of cardioballistic motion and rapid head movement components due
to the incomplete separation of the ICA. Thus a more accurate

interpretation about the identification algorithm on the random
head and cardioballistic motions in Suplementary Table S9 is that
the algorithm actually estimates the dominant component of the IC,
instead of distinguishing each IC with only one physical origin.

Fig. 6.The automatic results of aE-REMCORwith identifiedmotion ICs in a scanwith severe rapid headmovements. (a) The time courses, (b) spectra, (c) topographicmaps of the identified
motion IC. (d) The maximum displacement of the voxels (D) for each brain volume. (e) The root mean square difference (rms) between an fMRI volume and the 1st volume. (f) The
rotation angles roll, pitch, yaw and the displacements along the superior (dS), left (dL) and posterior (dP) directions calculated by AFNI 3dvolreg. (g) The ΔTSNR plots on the slices of
the brain along the axial direction without volume registration (upper plot) and with volume registration (lower plot). (h) The close-up of the red box in (a). In (d)–(f), the results
with and without aE-REMCOR are respectively plotted in red and black lines.
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3.2. TSNR improvement

The ΔTSNR with and without the volume registration using AFNI
3dvolreg are plotted on the slices of the brain along the axial direction
in Figs. 5(g) and 6(g). The figures show that larger ΔTSNR are obtained
on the brain edge regions, as these areas are affected the most by the
rapid head movement. Also, the motion correction in a particular time
period gives similar ΔTSNR pattern in alternative slices, since with the
SENSE acceleration factor = 2 used for the fMRI image acquisition, the
first half of the interleaved images are acquired in one time period, and
the remaining half of the interleaved images are acquired in the other
time period. In Figs. 5(g) and 6(g), the average improvements of the
TSNR over the brain (〈ΔTSNR〉) without volume registration are 6.5%
and 16.7% (5.4% and 13.1%with volume registration). The corresponding
top 10th percentile of ΔTSNR without volume registration reaches over
14.3% and 33.9% (14.6% and 28.2% with volume registration).

Fig. 7 shows the results from a scanwith little subjectmotion. For this
scan, one IC is identified as the cardioballisticmotion IC. No significant im-
provement is observed in TSNR (Fig. 7(g)), and 〈ΔTSNR〉without volume
registration is increased by 1.1% (1.4% with volume registration). While
aE-REMCOR is shown to be capable of substantially removing head
movements in the fMRI dataset in Figs. 5 and 6, it does not necessarily
improvemuch the image quality for the scanwith little headmovements
as themotion artifact in the fMRI data is small. Since a larger 〈ΔTSNR〉 can
be obtained in the scans with more severe motions, it is thus expected
that the efficiency of aE-REMCOR depends on the motion severity.

Figs. 5(d)–(f), 6(d)–(f) and 7(d)–(f) show the maximum displace-
ment of the voxels for each brain volume (D), the root mean square
difference between an fMRI volume and the 1st volume (rms), and the
motion parameters (roll, pitch, yaw, dS, dL, dP) calculated by AFNI
3dvolreg. The spikes in D, rms and the motion parameters indicate the
occurrences of the rapid head movements. With the application of aE-
REMCOR, the spikes in Figs. 5(d)–(f) and 6(d)–(f) are significantly re-
duced, and the fluctuations in Fig. 7 (d)–(f) are also slightly smoothed.

3.3. Efficiency of aE-REMCOR

The rapid change in the magnitude of the maximum displacements
of the voxels for each brain volume (Figs. 5(d), 6(d) and 7(d)) can be
used to characterize the severity of the head movements for the exam-
ination of the efficiency of aE-REMCOR. To measure the fluctuations of
the maximum displacement for the brain voxels (D), the second deriv-
ative d2D(n)/dn2 is calculated, where n is the number index of the brain
volume. The head movement severity is defined by the average magni-
tude of the second derivative over the entire scan, and is given by

f ¼ mean d2D nð Þ=dn2
���

���
.

Δtð Þ2;n ¼ 1;…;NfMRI

� �
: ð7Þ

Here Δt = 2 s is the time interval between the acquisitions of two
consecutive brain volumes, which is equal to the repetition time of the
fMRI scan. The motion severities with and without the application of

Fig. 6 (continued).
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aE-REMCOR are denoted by f ′ and f respectively. Note that the motion
severity f signifies the fast changing spiky features of D instead of
the slowly varying components. It can be interpreted as the average
acceleration of the headmotions during the scan. Thus a larger f usually
indicates occasional or prolonged period of rapid head movements
during the scan. To distinguish these two situations, the kurtosis of
d2D(n)/dn2 is calculated:

κ f ¼ kurtosis d2D nð Þ=dn2= Δtð Þ2;n ¼ 1;…;NfMRI

� �
: ð8Þ

Kurtosis is a measure of non-Gaussianity. For prolonged period of
rapid headmovements, the distribution of d2D(n)/dn2 tends to become
more Gaussian by the Central Limit Theorem, giving a small κf and a
large f. The occasional rapid head movements, on the other hand, will
give rise to a large κf and a moderate f. Finally, a small κf and a small f
indicate the absence of significant head motions.

The aE-REMCOR was applied to 305 fMRI scans. The average im-
provement 〈ΔTSNR〉 is plotted against f in Fig. 8(a), (c), and the im-
provements ΔTSNR(r) at the upper (blue dots) and lower (red dots)
10th percentile are plotted in Fig. 8(b), (d). It should be noted that a
larger 〈ΔTSNR〉 can usually be achieved in the scans with large f and κf.
In other words, a higher aE-REMCOR efficiency can be obtained when
there are severe head movements during the scan. With aE-REMCOR,
the largest average improvement over the brain 〈ΔTSNR〉 goes up to
27%, and the corresponding top 10% of the ΔTSNR reaches over 55%.
The average 〈ΔTSNR〉 over the scanswith prolonged (f N 0.10) and occa-
sional (κf N 40) rapid head movements in Fig. 8(a) are 13.7% and 7.7%

(9.1% and 5.2% in Fig. 8(c)). This shows a higher correction performance
in scanswith prolonged rapid headmovements than in scanswith occa-
sional rapid head movements. In most cases when the subjects have no
significant motion (small f and κf), 〈ΔTSNR〉 increases slightly by a few
percent, indicating the effectiveness of aE-REMCOR in removing the
cardioballistic motions in the fMRI dataset.

The decrease in the motion severity Δf = f - f', which quantifies the
smoothing of the fluctuations in D after motion correction, is another
measure of the efficiency of the aE-REMCOR. For instance, if aE-
REMCOR removes all traces of motions, the maximum displacement of
the voxels for all brain volumes (D(n), n = 1, …, NfMRI), and hence f',
vanishes. In this limit, Δf/f = 1. In the other extreme, if the EEG based
regressors fail to carry any motion information, f' can be any number
larger than f depending on the performance of AFNI 3dTfitter. In this
case, Δf/f ≤ 0. In reality, there is an upper limit for the efficiency ratio
Δf/f. The ratio is smaller than one asD is unlikely to be zero after themo-
tion correction because of the noise and inaccurate representation of
motions in the EEG data and also the fMRI data. Fig. 9(a) plotsΔf against
f for the 305 scans, and Fig. 9(b) plots the efficiency ratio Δf/f. Similar to
the TSNR analysis, a higher efficiency ratio Δf/f can usually be achieved
when there are severe head movements during the scan (large f). The
maximum efficiency of the current aE-REMCOR algorithm can be ap-
proximated by the bounding slope of the plot, which is about 74%. The
average efficiency over the 305 scans is 18%, and the maximum effi-
ciency over the scans is 71%. aE-REMCOR is shown to be capable of im-
proving the TSNR and reducing the motion severity in scans with rapid
head movements and cardioballistic motions. Nevertheless one should
be cautious in using 3dTfitter for cardioballistic motion correction in

Fig. 7.The automatic results of aE-REMCORwith identifiedmotion ICs in a scanwith little headmovements. (a) The time courses, (b) spectra, (c) topographicmapsof the identifiedmotion
IC. (d) Themaximumdisplacement of the voxels (D) for each brain volume. (e) The rootmean square difference (rms) between an fMRI volume and the 1st volume. (f) The rotation angles
roll, pitch, yaw and the displacements along the superior (dS), left (dL) and posterior (dP) directions calculated by AFNI 3dvolreg. (g) TheΔTSNR plots on the slices of the brain along the
axial directionwithout volume registration (upper plot) andwith volume registration (lower plot). In (d)–(f), the results with andwithout aE-REMCOR are respectively plotted in red and
black lines.
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experiments with small signal-to-noise ratio, as any inefficient motion
correction will introduce relatively significant overcorrection in the
fMRI images.

3.4. rs-fMRI connectivity analysis.

The utility of aE-REMCOR to improve the rs-fMRI connectivity of the
defaultmode network (DMN) is examinedwith the seed-based correla-
tion analysis in this section. The motion severity parameters f and κf

for the resting scans are summarized in Fig. 10. These parameters are
used to choose the scanning group with occasional rapid head move-
ments (κf N 40: the 7 scans in red circle) and the scanning group with
prolonged period of rapid head movements (f N 0.10: the 4 scans in
blue circle).

Fig. 11(a)–(b) plot the rs-fMRI DMN correlation maps for the scan
previously shown in Fig. 6. Stripes are observed in Fig. 11(a) for the
correlation map without aE-REMCOR. The stripes can be seen clearly
in the correlation difference (Fig. 11(c)). This stripe pattern originates

Fig. 8. The plots of (a), (c) the average improvement 〈ΔTSNR〉 against themotion severity f; (b), (d) theΔTSNR at the upper (blue dots) and lower (red dots) 10th percentile against f. The
ΔTSNR in (a)–(b) are calculated without volume registration. TheΔTSNR in (c)–(d) are calculated with volume registration (AFNI 3dvolreg). The color used in (a) and (c) is scaled to the
kurtosis of the second derivative of the maximum displacement D defined in Eq. (8).

Fig. 9. The plots of (a) Δf against themotion severity f; (b) the efficiency ratioΔf/f against f. The color used in (a) and (b) is scaled to the kurtosis of the second derivative of themaximum
displacement D defined in Eq.(8).
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from the motion-induced signal loss in neighboring imaging slices as
discussed in Section 3.2. When aE-REMCOR is applied, the contrast of
the stripes reduces (Fig. 11(b)). Fig. 11(d)–(f) plot the group correlation
differences in scans with occasional (κf N 40), prolonged (f N 0.10), and
both kinds of rapid head movements (κf N 40 or f N 0.10). Similar
motion-induced stripes with a lower contrast can be observed. The
group correlation maps of the DMN for all resting scans are plotted in
Fig. 11(g) and (h). The corresponding group correlation difference
((h) - (g)) is shown in Fig. 11(i). When all the 86 resting scans are
considered, the motion-induced stripes disappear (Fig. 11(i)). This
shows the reduced significance of motion artifacts on the DMN con-
nectivity when sufficient scans with little head motion are considered.
Nevertheless, when the entire group of subjects exhibits significant
rapid head movements, slice-by-slice fMRI motion correction is partic-
ular important to improve the accuracy of the rs-fMRI connectivity
analysis. The centers of the ROIs in posterior cingulate cortex (PCC),
medial prefrontal cortex (mPFC), lateral parietal cortex (LatPar-L,
LatPar-R) and hippocampal formation (HF-L, HF-R) of the DMN
are marked with crosshairs in Fig. 11. The correlation difference at a
given ROI is denoted by ΔC(ROI's name). The correlation difference,
its percentage change relative to the original correlation value without
aE-REMCOR, and the p-value are calculated for different scanning
groups. For all scanning groups, a slight correlation decrease is ob-
served at the seed ROI: for κf N 40, ΔC(PCC) = −0.017 (−2.2%,
p = 0.004); for f N 0.10, ΔC(PCC) = −0.004 (−0.7%, p = 0.213);
for κf N 40 or f N 0.10, ΔC(PCC) = −0.012 (−1.7%, p = 0.003); for all
resting scans, ΔC(PCC) = −0.003 (−0.4%, p = 0.018). For the group
with κf N 40, a large correlation change is found at the hippocampal for-
mation ΔC(HF-R) = 0.019 (60.4%, p = 0.018). When all the resting
scans are considered, ΔC(mPFC) = 0.002 (1.1%, p = 0.451),
ΔC(LatPar-L) = −0.007 (−3.3%, p = 0.018), ΔC(LatPar-R) = −0.004
(−2.1%, p = 0.174), ΔC(HF-L) = 0.006 (8.8%, p = 0.027), and
ΔC(HF-R) = 0.008 (12.6%, p = 0.005). The changes are statistically
significant in PCC, LatPar-L, HF-L, and HF-R.

4. Discussions

In this paper, automatic categorization algorithms were developed
to provide quantitative descriptions and analyses on the features ob-
served in the mean power spectral density, topographic map and signal
contribution of an identified IC in the EEG data acquired simultaneously

with fMRI. The algorithm aims to mimic the manual selection of the ICs
related to headmovements by adequately choosing the features that are
commonly observed in the motion ICs. The effectiveness of the algo-
rithm can bemeasured by its accuracy of reproducing themanual selec-
tion. From the examination of a total of 9455 ICs in 305 scans, there
were 1045 true identification of motion ICs (TP), 8370 true identifica-
tion of non-motion ICs (TN), 9 false identification of motion ICs (FP),
and 31 false identification of non-motion ICs (FN), giving a precision
PIC = TP/(TP + FP) = 99.15%, recall RIC = TP/(TP + FN) = 97.12%,
and F-score = 2PICRIC/(PIC + RIC) = 98.12%.

The present categorization algorithm is utilized to select the motion
ICs for the purpose of correcting head motions on slice-by-slice basis in
the fMRI dataset. While the selected cardioballistic motion ICs manifest
distinct cardiac pulses in each cycle, they are insensitive to the improper
positioning of electrocardiogram (ECG) and are less sensitive to head
motions when compared to the ECG. Thus there is an advantage in uti-
lizing the selected cardioballistic motion ICs for applications like cardiac
period and arrhythmia detections.

The developed automatic algorithm can also be utilized to prepro-
cess the EEG data when it is applied in a reverse manner to remove, in-
steadof to select, the identified rapid headmovement ICs, cardioballistic
motion ICs, and possible blink and saccade ICs from theEEGdata. For the
current purpose ofmotion ICs selection, a cardioballistic ICwith exceed-
ingly large power at high harmonic frequencies in the mean power
spectral density or insignificantly small EEG signal contribution is not
considered. For the purpose of preprocessing the EEG data, ICs related
to cardioballistic artifact with large power at high harmonic frequencies
and small signal contribution should also be selected for removal. With
the preprocessed EEG data, further identification, such as for the alpha
rhythm of the neuronal signal, is possible when the features of the
mean power spectral density, topographic map and signal contribution
are adequately chosen and the parameters are properly adjusted.

Currently parameters are determined empirically based on the com-
monly observed features in 305 scans from 16 subjects in a 3 T MRI
scanner. The parameters may need to be adjusted when other than
3 Tesla MRI field strengths are used or more datasets are available.
Given a huge amount of data, the identifications of motions will benefit
from more systematic approaches, like logistic regression or support
vector machine modeling. Nevertheless, the current automatic algo-
rithm provides basic tools to understand the properties of the motion
related ICs, the potential and limitation of the ICA, and the efficiency
of the motion correction in the fMRI datasets with the EEG based
regressors.

The calculations are carried out in a workstation with dual Intel®
Xeon® CPU E5-2620 at 2.00GHz and 16GB memory. No explicit
parallelizationwas implemented in theMATLAB code. The computation
time of the ICA increases with the requested number of ICs, and the
computation time of the motion correction procedures in AFNI in-
creases with the number of selected motion ICs and the size of the
image. Consider an fMRI dataset with 260 brain volumes, 34 axial slices
per volume and an image matrix 128 × 128, and an EEG dataset with
31 ICs and 5 identified as motion ICs, the computation times (and
percentage) of the main motion correction procedures are 13.9 s
(2.3%) for the EEG data preprocessing, 137.5 s (22.4%) for the ICA,
8.6 s (1.4%) for the spectrum analysis, 3.9 s (0.6%) for the topography
analysis, 31.9 s (5.2%) for the signal contribution analysis, 228 s (37.1%)
for the AFNI regressors calculations in BRIK format, and 191.4 s (31.1%)
for the AFNI 3dtfitter calculations. It should be noted that the computa-
tion times of the ICA and AFNI dominate the whole process. Thus their
speeds critically determine the possibility of the aE-REMCOR in real-
time application. Since the three motion IC identification analyses can
be performed independently and simultaneously for each IC, the com-
putation speed can be improved by parallelizing the algorithm. For
themotion correction of the fMRI data in AFNI, the calculations, in prin-
ciple, can also be sped up by parallelizing the algorithmwith the use of
graphic processing unit (GPU) (Misaki et al., 2015).

Fig. 10. The summary of the motion severity parameters f and κf in resting scans. The
scans with κf ≥ 40 and f ≥ 0.1 to be used in the rs-fMRI connectivity analysis in
Figs. 11(d)–(f) are enclosed in red and blue lines.
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5. Conclusions

An automatic EEG-assisted retrospective motion correction (aE-
REMCOR)method that utilizes EEG data to correct for headmovements
in fMRI on a slice-by-slice basis is reported. The aE-REMCOR automati-
cally preprocesses and analyzes the EEG data, identifies the indepen-
dent components (ICs) corresponding to head motions, and constructs
the EEG based regressors with the identified motion ICs. The entire

automatic procedure is carried out in MATLAB. The motion artifacts in
the fMRI images are corrected with the motion regressors in AFNI.

The automatic identification of the motion ICs is achieved by recog-
nizing the special features of the motion artifacts imposed on the mean
power spectral density, topographic map, and EEG signal contribution
of the ICs. An automatic algorithm for themotion IC identification is de-
veloped. The algorithm is shown to be capable of identifying the ICs
related to rapid head movements and cardioballistic motions, and also

Fig. 11. Resting state connectivity of the defaultmode network (DMN). (a)–(b): Correlationmapwithout andwith aE-REMCOR for the scanwith significant rapid headmovements shown
in Fig. 6. (c): Correlation difference ((b)–(a)). (d)–(f): Group correlation difference for the scans with occasional rapid head movements (κf ≥ 40), prolonged rapid head movements
(f ≥ 0.1), and both (κf ≥ 40 or f ≥ 0.1). (g)–(h): Group correlation map without and with aE-REMCOR for all the 86 resting scans. (i): Group correlation difference for all the resting
scans ((h)–(g)). The centers of the ROI in PCC (0, −52, 22), mPFC (0, 49, 2), LatPar-L (−45, −60, 32), LatPar-R (43, −60, 29), HF-L, (−22, −19, −15) and HF-R (22, −19, −15) of
the DMN are respectively marked with green, white, maroon, pink, purple and yellow crosshairs. Indicated next to each slice image is the z-coordinate of the slice. For the group
analysis in (g)–(i), uncorrected p b 0.05 is used.
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the dominant component in the mixture of them when the ICA fails to
separate the different motion components completely.

The aE-REMCOR is applied to 305 fMRI scans from 16 subjects in a
3 T MRI scanner. The results show that aE-REMCOR is capable of sub-
stantially removing head motions in fMRI images. With aE-REMCOR,
the spikes and fluctuations of the motion parameters induced by the
headmovements are significantly reduced and smoothed. In particular,
when there are significant rapid head movements during the scan, a
large temporal signal-to-noise ratio (TSNR) improvement and high cor-
rection efficiency can be achieved. Depending on the subject's motion,
the average TSNR improvement over the brain with aE-REMCOR goes
up to 27% with the largest 10% of the TSNR improvement reaches over
55%. In the efficiency analysis for themotion correction, the average cor-
rection efficiency over the 305 scans is 18% and the largest achieved ef-
ficiency is 71%. It is observed from the results that the highest possible
motion correction efficiency with the current aE-REMCOR algorithm is
bounded by approximately 74%. The utility of aE-REMCOR on the fMRI
connectivity of the default mode network (DMN) is examined in 86
resting scans. The motion-induced position-dependent error in the
DMN connectivity analysis is shown to be reduced when aE-REMCOR
is utilized. The results also show the importance of slice-by-slice fMRI
motion corrections to improve the accuracy of rs-fMRI connectivity
analysis when the entire group of subjects exhibits significant rapid
head motions. The achieved automation procedure warrants its use
in large clinical EEG and fMRI studies, and provides incentive for
conducting simultaneous EEG & fMRI.
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• A  real-time  method  based  on ICA  (rtICA)  is  proposed  to  remove  artifacts  from  EEG  data  acquired  simultaneously  with  fMRI.
• The  rtICA  effectively  reduces  ocular,  motion,  BCG,  muscle  and  residual  MR artifacts  and  retrieves  EEG  signals.
• The  rtICA  method  following  the  rtAAS  outperforms  the rtAAS  for removing  artifacts  in  real  time.
• The  rtICA  revealed  reliable  artifact  suppression  results  for  further  applications  of real-time  multimodal  EEG-fMRI.
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a  b  s  t  r  a  c  t

Background:  Simultaneous  acquisition  of  EEG  and  fMRI  data  results  in EEG  signal  contamination  by  imag-
ing  (MR)  and  ballistocardiogram  (BCG)  artifacts.  Artifact  correction  of EEG  data  for  real-time  applications,
such  as  neurofeedback  studies,  is  the  subject  of ongoing  research.  To  date,  average  artifact  subtraction
(AAS)  is  the  most  widespread  real-time  method  used  to  partially  remove  BCG  and  imaging  artifacts  with-
out  requiring  extra  hardware  equipment;  no  alternative  software-only  real  time  methods  for  removing
EEG artifacts  are  available.
New methods:  We  introduce  a novel,  improved  approach  for real-time  EEG  artifact  correction  during
fMRI  (rtICA).  The  rtICA  is based  on real  time  independent  component  analysis  (ICA)  and  it  is  employed
following  the  AAS  method.  The  rtICA was  implemented  and  validated  during  EEG and  fMRI  experiments
on  healthy  subjects.
Results: Our  results  demonstrate  that  the rtICA  employed  after  the  rtAAS  can obtain  98.4%  success  in  detec-
tion  of  eye  blinks,  4.4 times  larger  INPS  reductions  compared  to  RecView-corrected  data,  and  effectively
reduce  motion  artifacts,  as  well  as imaging  and muscle  artifacts,  in real  time  on six healthy  subjects.
Comparison  with  existing  methods:  We  compared  our  real-time  artifact  reduction  results  with  the rtAAS
and  various  offline  methods  using  multiple  evaluation  metrics,  including  power  analysis.  Importantly,
the  rtICA  does  not  affect  brain  neuronal  signals  as  reflected  in  EEG  bands  of interest,  including  the alpha
band.
Conclusions:  A  novel  real-time  ICA  method  was  proposed  for improving  the  EEG  quality  signal  recorded
during  fMRI  acquisition.  The  results  show  substantial  reduction  of  different  types  of  artifacts  using  real-
time ICA  method.

©  2016  The  Author(s).  Published  by Elsevier  B.V.  This  is an  open  access  article  under  the CC
BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Electroencephalography (EEG) and functional Magnetic Res-
onance Imaging (fMRI) are widely used, noninvasive, and safe
techniques for detecting and characterizing changes in brain states
and their relation to brain activity (Ritter and Villringer, 2006). The

∗ Corresponding author at: Laureate Institute for Brain Research, Tulsa, OK, USA.
E-mail address: jbodurka@laureateinstitute.org (J. Bodurka).

techniques complement each other well because of high tempo-
ral resolution of EEG data and high spatial resolution of fMRI data
(Niazy et al., 2005). Furthermore, because EEG is a direct measure of
brain activity and fMRI is an indirect measure, simultaneous EEG-
fMRI measurements can aid in cross validation. However, recording
EEG inside the MRI  scanner and during fMRI acquisition suffers
from several safety and technical challenges (Kruggel et al., 2000). A
major problem is the presence of artifacts in EEG data, such as MR  or
imaging artifacts and also ballistocardiogram (BCG) artifacts. BCG
and imaging artifacts appear in the EEG signal as a result of the sig-

http://dx.doi.org/10.1016/j.jneumeth.2016.09.012
0165-0270/© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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nal being recorded inside MRI  scanner and during fMRI acquisition
respectively (Niazy et al., 2005). Other types of artifacts, such as
muscle and ocular artifacts can be present in EEG data regardless
if the EEG is recorded inside or outside the MRI  scanner (Mantini
et al., 2007; McMenamin et al., 2010).

The average artifact subtraction method (AAS) (Allen et al., 1998,
2000) is commonly used to remove BCG and imaging artifacts. To
date, it is the most widespread real-time method used to partially
remove such artifacts. The AAS method is based on the repetitive
pattern of imaging and BCG artifacts, and it generates an artifact
template to subtract it from the EEG signal. Even though the AAS can
effectively reduce BCG and imaging artifacts, some residual artifacts
remain when this algorithm is applied to raw EEG data in both real
time and offline (Niazy et al., 2005). High quality, modern MRI  scan-
ner gradient controllers together with synchronization of MRI  and
EEG system clocks enable generation of accurate and reproducible
templates of gradient artifacts, and allow for AAS template subtrac-
tion that has proven extremely successful (Laufs, 2012). However,
temporal variability of BCG artifact makes removal of BCG artifact
using the AAS less efficient. While the AAS has proven successful
for reducing BCG and, especially, imaging artifacts, the method does
not remove ocular, motion, and muscle artifacts. Instead, ICA has
been widely used in offline analysis as an alternative for attenu-
ating residual imaging and BCG artifacts, and other artifacts (e.g.,
Mantini et al., 2007; McMenamin et al., 2010; Srivastava et al., 2005;
Wong et al., 2016; Zotev et al., 2016). A variety of ICA-based meth-
ods (e.g., FastICA, extended Infomax, Robust ICA, JADE, and SOBI)
have been utilized for this purpose. More recently, Hsu et al. (2016)
demonstrated that online recursive ICA algorithms are fast enough
for real-time EEG source separation. However, they did not suggest
any automatic algorithm for identifying artifacts among sources in
their study.

Problems associated with EEG artifacts have led to the devel-
opment of a number of alternative methods for removing fMRI
environment and regular physiological artifacts. Niazy et al. (2005)
suggested a novel method, namely optimal basis set (OBS), for
generating BCG artifact templates. They used principal compo-
nent analysis (PCA) for capturing temporal variations in artifacts
and regressing BCG artifacts from EEG data. The result is supe-
rior performance over the AAS for removing BCG artifacts, with
fewer residual artifacts remaining. This method has recently been
adopted for real-time artifact correction (Wu et al., 2016). Like the
rtAAS, this method can only remove BCG and imaging artifacts and
the application of this method is obscured when the accuracy of
R-peak detection is low due to ECG data distortion. Furthermore,
since muscle and especially ocular and motion artifacts often have
greater amplitudes compared to neural activity and higher or sim-
ilar amplitude to BCG artifacts, the interaction of motion, muscle
and ocular artifacts on BCG artifact template needs to be inves-
tigated further (Wu  et al., 2016). Kim et al. (2004) proposed a
combination of wavelet-based de-noising with adaptive filtering as
post-processing to increase the AAS performance. Likewise, adap-
tive noise cancellation was suggested as a preprocessing step for
the OBS (Niazy et al., 2005). PCA has also been used for remov-
ing BCG and imaging artifacts in studies reported in Negishi et al.
(2004) and Bénar et al. (2003). Wavelet transform, followed by ICA,
has proven to be a useful method for removing artifacts (Akhtar
et al., 2012; Zhou and Gotman, 2004).

Several researchers utilized reference signals for removing BCG
artifacts (Bonmassar et al., 2002; Dunseath and Alden, 2010; Luo
et al., 2014; Masterton et al., 2007; van der Meer et al., 2016).
Bonmassar et al. (2002) utilized a piezoelectric motion sensor to
estimate motion artifact noise. Correlation between motion sensor
and EEG signal was used to design the Kalman filter for removing
BCG artifacts. Masterton et al. (2007) introduced a wire-loop-based
method for correction of motion and BCG artifacts. Dunseath and

Alden (2010) suggested using reference electrodes attached to
a conductive reference layer for recording artifacts and further
removing noise from EEG data. Although these methods appear
beneficial for reducing artifacts, they are not yet widely used.
Unfortunately, these methods require hardware modification and
additional equipment, which makes them complicated and more
expensive to implement (Jorge et al., 2015). Furthermore, some of
these methods require complicated and time consuming calcula-
tions, which make them less suitable for real-time applications.

Real-time imaging and BCG artifact correction techniques were
used in several simultaneous EEG and fMRI studies (Becker et al.,
2011; Cavazza et al., 2014; Zich et al., 2015; Zotev et al., 2014).
The AAS implemented in real time in the RecView software (Brain
Products GmbH, Gilching, Germany) was  used in all of these studies
for reducing BCG and imaging artifacts. Developing new real-time
algorithms for removing EEG artifacts would make real-time anal-
ysis of multimodal EEG-fMRI signals more feasible and thus open
many new research opportunities to study human brain function.

In this work, a novel real-time EEG artifact correction approach
during fMRI (rtICA) is developed. The rtICA is a real-time ICA-based
algorithm for reducing BCG and imaging artifacts, in addition to
motion, ocular, and muscle EEG artifacts, and to improve EEG data
quality acquired during fMRI. Imaging and BCG artifacts are first
reduced using the BrainVision RecView software in real time prior
to applying the rtICA (rtAAS + rtICA). The following section provides
a more detailed description of our proposed rtICA method. Since the
EEG activity is changing during time and in different conditions,
instead of comparing EEG data recorded during fMRI acquisition
and outside MRI  scanner, we preferred to compare the performance
of the rtAAS + rtICA for removing artifacts with RecView-corrected
data and EEG data after applying different offline artifact correc-
tions. Finally, we discuss results and improvement of the EEG data
quality. A preliminary report of portions of this work was  presented
in Mayeli et al. (2015).

2. Methods

2.1. Data acquisition

The study was conducted at the Laureate Institute for Brain
Research with research protocol approved by the Western Insti-
tutional Review Board (IRB). All participants provided written
informed consent and received financial compensation for partici-
pation.

The rtAAS + rtICA artifact removal method has been tested on
six healthy subjects (mean age: 36 ± 14 years, three females). Four
resting EEG-fMRI runs were conducted; each run lasted 8 min 40 s.
The participants were instructed to relax and rest with eyes closed
for two runs, and then keep their eyes open and fixed on a cross
for an additional two  runs. Sequence runs with eyes-closed and
eyes-open was balanced to eliminate fatigue factor (Yuan et al.,
2013).

MR  images were acquired via a General Electric Discovery
MR750 whole-body 3 T MRI  scanner with a standard 8-channel,
receive-only head coil array. For fMRI acquisition, a single-shot
gradient-recalled EPI sequence with Sensitivity Encoding (SENSE)
was employed. The EPI sequence was  custom modified to ensure
that the repetition time TR was exactly 2000 ms  (with 1 �s accu-
racy) and further enabling accurate correction of MR  artifacts in
EEG data, recorded simultaneously with fMRI. EPI imaging had
the following parameters: FOV = 240 mm,  slice thickness = 2.9 mm,
slice gap = 0.5 mm,  34 axial slices per volume, 64 × 64 acqui-
sition matrix, echo time TE = 30 ms,  SENSE acceleration factor
R = 2, flip angle = 90◦, sampling bandwidth = 250 kHz. The fMRI
run time was  8 min  40 s. For allowing the fMRI signal to reach
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Fig. 1. Proposed data processing procedure suitable for real-time implementation. SOBI was  applied on the whole 10,000 point sliding window, but the correction was only
performed on the final 1000 pts.

steady state, three EPI volumes (6 s) were added at the begin-
ning of the run and were excluded from data analysis. The fMRI
voxel size was 3.75 × 3.75 × 2.9 mm3. For acquiring anatomical
image, a T1-weighted magnetization-prepared rapid gradient-echo
(MPRAGE) sequence with SENSE was used. The MPRAGE sequence
had the following parameters: FOV = 240 mm,  axial slices per
slab = 128, slice thickness = 1.2 mm,  image matrix size = 256 × 256,
TR/TE = 5.0/1.9 ms,  SENSE factor R = 2, flip angle = 10◦, delay
time TD = 1400 ms,  inversion time TI = 725 ms,  sampling band-
width = 31.2 kHz, scan time = 4 min  58 s.

EEG signals were recorded simultaneously with fMRI via a 32-
channel MR-compatible EEG system from Brain Products GmbH.
The EEG cap included 32 electrodes, arranged according to the
international 10–20 system. One electrode was  placed on the sub-
ject’s back for recording the ECG signal. A Brain Products’ SyncBox
device was used to synchronize the EEG system clock with the
10 MHz  MRI  scanner clock. EEG acquisition temporal resolution
was 0.2 ms  (i.e., 16-bit 5 kS/s sampling), and measurement resolu-
tion was 0.1 �V. EEG signals were hardware filtered throughout the
acquisition in a frequency band between 0.016 and 250 Hz. Brain
Products’ RecView software was used to monitor EEG data acqui-
sition in real time and to reduce imaging and BCG artifacts before
streaming to the rtICA module.

2.2. Second order blind identification

Second order blind identification (SOBI) (Belouchrani et al.,
1997) takes advantage of temporal correlations in the source
activities. It calculates second order statistics–covariance
matrices–which are later diagonalized. The SOBI differs from
other blind separation algorithms by its robustness, the low num-
ber of tunable parameters requiring adjustment, and convergence
speed, which is the most important reason for choosing this ICA
algorithm for this study. Table 1 presents the average computation
time required for ICA decomposition of 40 s 22-channel data using
different ICA algorithms, computed by averaging the execution

Table 1
Average computation time (s) for 40 s (10,000 data points) 22- channel data using
different ICA algorithms.

Time(s)

Infomax 13.56 ± 1.23
JADE 2.96 ± 1.28
FastICA 6.74 ± 4.54
SOBI 0.71 ± 0.10

time for 3 subjects during an 8 min  and 40 s resting state run.
The ICA computations were performed on MATLAB 2012. The
ICA MATLAB codes available in EEGLAB toolbox and their default
values for ICA convergence were utilized. Among the presented
four algorithms, SOBI has the lowest averaged time and standard
deviation. Based on Klemm et al. (2009) study comparing ICA
algorithms, the SOBI has been shown to provide some of the
best-quality results in separating EEG data and artifacts.

2.3. Proposed ICA data processing suitable for real-time
implementation

The proposed data processing procedure suitable for real-time
implementation is shown in Fig. 1 (Mayeli et al., 2015). To obtain
reliable and stable results from ICA decomposition, data submitted
to the algorithm should be at least a multiple k of n2, where n is
the number of channels and k may  need to be 20 or larger (Onton
et al., 2006). For instance, given 31-channel data and k = 20, data
samples will be at least 19,220. At a sampling rate of 250 S/s, data
window duration is approximately 80 s. In this study, 22 channels
were selected to increase algorithm speed, as opposed to perform-
ing ICA on all channels. When n = 22 and k = 20, the number of data
points submitted to ICA should be more than 9680 – rounded up
to 10,000 – data points. The selected channels, shown in Fig. 2,
include all the available frontal EEG channels, because EEG activity
over the frontal and prefrontal brain regions is relevant to emotion
regulation and is used for neurofeedback studies (Cavazza et al.,
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Fig. 2. Selected 22 channels for ICA decomposition.

Fig. 3. rtAAS + rtICA flowchart.

2014; Zotev et al., 2014, 2016). Occipital electrodes (i.e. O1, O2 and
Oz), which are important for investigating human visual evoked
potential, were selected for ICA decomposition as well (Becker et al.,
2008, 2011). The other channels were selected based on two  crite-
ria. First, since the BCG artifacts mostly exhibit bipolar properties,
we selected symmetric channels for ICA decomposition. Second, the
channels which are contaminated with artifacts and have common
artifacts with occipital or frontal electrodes (e.g. channels T1 and
T2 are affected by muscle artifacts) were selected. These selected
channels and number of channels can be changed based on the
application of real-time EEG-fMRI study and number of EEG system
electrodes.

Fig. 3 offers a detailed flow diagram description of the
rtAAS + rtICA process. The SOBI algorithm was implemented in the
following way. The RecView software was utilized to reduce imag-

ing and BCG artifacts from the 32-channel EEG data in real time, and
then to down-sample data to 250 S/s from 5000 S/s. RecView output
data were exported in 8 ms  blocks (i.e., two  data points per block
for all channels). The number of data points is first initialized to
zero. During preprocessing, newly arriving data points are counted.
Since this scheme requires 23 channels (i.e., 22 EEG channels plus
1 ECG electrode) for ICA decomposition, data points related to
these channels are selected. ICA decomposition commences when
total number of data points reaches 10,000. Four features (power
spectrum density, topographic map, kurtosis, energy) are extracted
from the last 1000 data points of each independent component (IC).
Based on extracted features and defined thresholds, a maximum of
12 ICs for various types of artifacts are considered (i.e., a maximum
of three components for ocular, three for motion, three for mus-
cle and residual imaging artifact, and three components for BCG
artifact). The number of ICs identified as artifacts was  limited to
prevent losing any brain activity. After subtracting artifactual ICs,
inverse ICA reconstructs EEG data, and the number of data points is
set to 9000. This procedure is repeated for each 1000 data samples
received.

An example application of real-time EEG acquisition is EEG neu-
rofeedback. Frontal EEG asymmetry is a promising target for EEG
neurofeedback aimed at training emotion regulation, as confirmed
by recent simultaneous EEG-fMRI studies (Cavazza et al., 2014;
Zotev et al., 2014, 2016). When used as a real-time target for EEG
neurofeedback, frontal EEG asymmetry in a specific EEG band is
defined as Zotev et al. (2014):

A = [P (F3) − P (F4)]
[P (F3) + P (F4)]

(1)

where P is the EEG power for a given channel in a specific EEG band
such as high-beta or alpha bands. Frontal EEG asymmetry in the
alpha EEG band is defined with the opposite sign (Cavazza et al.,
2014; Zotev et al., 2016).

2.4. Automatic IC classification

Various features are extracted from ICs and used to classify ICs as
brain activity and artifacts. The first is the topographic map of each
independent component, which indicates scalp map  projection of
selected components (i.e., each component primarily affecting a
specific portion of the brain and can be determined using an ICA
mixture matrix). The values of the topographic map were normal-
ized to unity using inverse ICA matrices. The second feature is IC
energy. The energy of a discrete time signal of x is defined by:

Ex �
∑∞

n=−∞
|x [n] |2 (2)

Kurtosis can also be used for separating artifacts and it is a mea-
sure of data distribution (i.e., peakedness or flatness) that can be
calculated using the following equation:

kurt(x) = E
{
x4

}
− 3

(
E
{
x2

})2
(3)

The final feature is power spectral density of IC calculated via
the Fast Fourier Transform (FFT) to indicate distribution of signal
power in frequency domain. For detecting eye, motion and residual
BCG artifacts, the spectrum in the range between 0.5 and 40 Hz
was normalized to the range of 0–1 and for detecting muscle and
residual MR  artifact, the spectrum in the range between 0.5 and
60 Hz was normalized to the unity.

The EEG data were recorded from three healthy female sub-
jects (mean age: 26 ± 6 years) and three male subjects (mean age:
29 ± 9 years) diagnosed with combat related post-traumatic stress
disorder (PTSD) across a neurofeedback experiment (3640 s) and
were used to define a reliable threshold for each feature and to avoid
removing brain activity instead of artifacts (Zotev et al., 2014).
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Table  2
The summary of the identification of the ICs based on energy, kurtosis, topographic features and spectrum characteristics.

Types of Artifacts Energy Kurtosis Topographic Features Spectral Characteristics

Eye Artifacts >108 >6 Prefrontal region (Fp1 and Fp2)
with a larger threshold value of
28%

Normalized power between 0.5
and 3 Hz >0.22

Residual BCG Artifacts – – Bipolar with the threshold
value of larger than 0.25
AND
Occipital region with a smaller
threshold value of 14%

Normalized power between 2
and 7 Hz> 0.18
AND
Normalized power between 7
and 12 Hz <0.12

Muscle and Residual Imaging Artifacts – – Unipolar Normalized power between 30
and 60 Hz >0.68
AND
Normalized power between 7
and 12 Hz <0.07

Motion Artifacts >109 >15 Bipolar with the threshold
value of 0.2

Normalized power between 0.5
and 4.5 Hz >0.26

Fig. 4. Automatic (a) eye artifact, (b) residual BCG artifact, (c) residual MR and Muscle artifact and (d) motion artifact detection and results of removing them from EEG data.

Table 2 summarizes real-time classification criteria for each type
of artifacts being detected including numerical threshold values for
kurtosis, energy, topographic features and spectral characteristics.
The described criteria are preliminary and need further optimiza-
tion. Fig. 4 shows an overview of automatic artifact IC identification.

2.4.1. Eye artifact detection
Eye movement and blinking produces an electrical potential at

a magnitude larger than brain activity. Due to eye proximity, ocular
artifacts mostly affect frontal pole electrodes (i.e. channels Fp1 and
Fp2), although they can propagate across much of the head and
distort brain signals. Ocular artifacts are characterized by strong
spatial projection in the prefrontal area, either shows high loadings

at the most anterior sites for eye blinks or manifests as an anterior
dipole for saccades, high energy and low-frequency peaks (between
0.5 and 3 Hz) in the frequency domain (McMenamin et al., 2010;
Wong et al., 2016). Based on such features, ocular artifacts can be
easily detected among different ICs.

2.4.2. Residual BCG artifacts detection
BCG artifacts are extremely problematic in EEG due to their over-

lap with frequency range of normal neural activity. Although the
RecView is often used to partially remove BCG artifacts, remain-
ing residual artifacts can obscure the EEG signal because: (1) ECG
signal recorded via chest or back electrodes during fMRI contains
artifacts that can make reliable R-peak detection difficult (Luo et al.,
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2014); and (2) AAS algorithm assumes pulse waveform with a
highly reproducible pattern within a given time interval. In this
way, subtracting average waveform from contaminated EEG can
appropriately remove BCG artifacts. Notably, this assumption has
not been proven (Kim et al., 2004). To reduce such artifacts, IC fea-
tures (e.g., high relative power of theta band activity between 2
and 7 Hz) related to BCG artifacts can be leveraged (Wong et al.,
2016). Furthermore, topographical maps corresponding to resid-
ual BCG artifacts exhibit primarily bipolar properties (Zotev et al.,
2012). The bipolar properties could be appear in right side of head
(i.e. channels F8, FC6, C4, CP6, P8 and T8) and left side of head (i.e.
channels F8, FC6, C4, CP6, P8 and T8) or frontal (i.e. Fp1, Fp2, F7,
F3, Fz, F4, and F8) and posterior (i.e. P7, P3, P4, P8, O1, Oz, and O2)
sides of the head. BCG artifacts contain fairly large peaks, as shown
in Fig. 4(b) and have high energy. Removing such ICs effectively
reduces BCG artifacts.

2.4.3. Muscle and residual imaging artifacts detection
Although the RecView is used to reduce imaging and BCG arti-

facts before applying ICA, some residual artifacts remain. Residual
imaging and muscle artifacts are primarily distinguished based on
power spectra with broad peaks at higher frequencies (i.e., higher
than regular EEG signal) (McMenamin et al., 2010). Because such
artifacts could appear in the beta band, only ICs with high frequency
activity at 30 Hz and higher are considered muscle and imaging arti-
facts (See Fig. 4(c)). After reducing such artifacts, most sharp spikes
with high amplitudes are removed from the EEG signal.

2.4.4. Motion artifact detection
Head, body, or electrode movement artifacts are easily rec-

ognized offline as a result of their large amplitude. Intervals
containing these artifacts can be excluded without difficulty, given
that such activity does not occur frequently for most subjects. Real-
time analysis of such data is difficult because of the random nature
of motion artifacts. Motion artifact ICs are characterized by high
kurtosis values (of the order of 10–1000), intense low-frequency
activity (0.5–4.5 Hz) and bipolar topographies similar to BCG arti-
facts with different threshold values (Wong et al., 2016; Zotev et al.,
2012). Because of the large magnitude of the random-motion arti-
facts, they may  appear across multiple ICs in the ICA decomposition.
Removing movement artifacts may  remove some brain activity as
well. To prevent this, the number of IC-detected movement arti-
facts is limited to only those components with very large energy
and kurtosis, as well as those with low frequency activity. Fig. 4(d)
shows IC identified as motion artifacts, as well as the outcomes after
removing them.

2.5. Implementation

The proposed algorithm was implemented in MATLAB (Math-
Works Inc., Natick, MA)  for offline testing. The SOBI algorithm,
implemented in EEGLAB (Delorme and Makeig, 2004) was used for
ICA decomposition.

For real-time implementation, software code was written in
Python programming language as an add-on module for simul-
taneous rtfMRI-EEG neurofeedback system as described in Zotev
et al. (2014). Real-time ICA decomposition of RecView-corrected
EEG data was added to the EEG client software for removing arti-
facts from signals before performing Math modules and integrating
EEG and fMRI. This processing module was named “eeg rtica”. Mod-
ule outputs were saved to files in real time for further comparison
with RecView-corrected data and offline methods.

2.6. Offline procedure for removing artifacts for evaluating
rtAAS + rtICA algorithm

The BrainVision Analyzer 2 software (Brain Products GmbH,
Germany) was used for offline analysis of the EEG data recorded
simultaneously with fMRI. Different studies show that ICA follow-
ing either the AAS or the OBS algorithms can successfully remove
residual artifacts (Debener et al., 2008; Mantini et al., 2007; Zotev
et al., 2014, 2016). Accordingly, for this study we primarily used this
method as a reference to evaluate the rtAAS + rtICA performance
and compare it with others. The procedure for offline EEG artifact
removal using the AAS, filtering and ICA (AAS + Filtering + ICA) is
the following. First, imaging artifacts were removed using the AAS
method (Allen et al., 2000). EEG signals were then down-sampled
to 250 S/s. Next, band-rejection filters (1 Hz bandwidth) were used
for removing fMRI slice selection fundamental frequency (17 Hz)
and its harmonics, vibration noise (26 Hz), and AC power line noise
(60 Hz). These band-rejection filters should be selected based on the
MRI  scanner and sequence properties. For removing signals unre-
lated to brain activity, EEG data were bandpass filtered from 0.1 to
80 Hz (48 dB/octave). For detecting R-peaks more easily, ECG data
were bandpass filtered from 0.1 to 12 Hz. Subsequently, BCG arti-
facts were removed using the AAS (Allen et al., 1998). A template
of BCG artifacts from 21 cardiac periods of preceding data for each
channel was used to create a template for removing BCG artifact
using the AAS. Notably, R-peak detection is required for generating
the BCG template. This can be accomplished automatically in the
BrainVision Analyzer 2 software, with subsequent visual inspection
to correct incorrectly positioned R-peak markers. After applying
the AAS for reducing BCG artifacts, the Infomax algorithm (Bell and
Sejnowski, 1995) was used for ICA decomposition. We chose the
Infomax as ICA algorithm since this method is widely used for sep-
arating artifacts from EEG data and has been proven to be among the
most reliable ICA methods for removing EEG artifacts (Nakamura
et al., 2006; Vanderperren et al., 2010). However, we  did not use
this method for our rtICA implementation, because the Infomax is
too slow for our real-time application (Klemm et al., 2009). ICA was
performed on 31 channels, resulting in 31 ICs. The topographic map,
power spectrum density, time course signal, energy value, and kur-
tosis value were used for detecting and removing artifactual ICs.
Afterwards, EEG signal was reconstructed using inverse ICA. Fur-
thermore, we compared the performance of the rtAAS + rtICA with
two other offline artifact correction methods, consisting of remov-
ing imaging artifacts using the AAS, reducing imaging artifacts
using AAS and other artifacts by means of our proposed automatic
ICA-based method (this method was implemented offline, but it can
be applied real-time as well). Finally, the rtAAS + rtICA results were
compared with the RecView-corrected EEG data with imaging and
BCG artifacts reduced in real time using the AAS.

2.7. Evaluation measures

Various evaluation metrics were used to determine the ability
of the rtAAS + rtICA to reduce EEG artifacts (and, more importantly,
preserve brain activity) and to compare its efficiency with that of
offline correction.

2.7.1. The percentages of corrected eye blinks detected
To evaluate the algorithm performance for detecting eye blinks,

EEG data were manually inspected to detect eye blinks and compare
results to automatically detected eye blinks using the rtICA.

2.7.2. Power spectral density
To evaluate the rtAAS + rtICA performance given non-ideal con-

ditions, we  computed power spectral density (PSD) for all 22 EEG
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Table  3
Eye blink detection results for 6 healthy subjects during eyes open resting state runs.

Number of Eye
Blinks Detected

True Number of
Eye Blinks

Percentage of Eye
Blinks Detected

Subject 1 190 193 98.45%
Subject 2 245 250 98.57%
Subject 3 82 84 97.62%
Subject 4 143 145 98.62%
Subject 5 71 75 94.67%
Subject 6 427 430 98.66%

channels before and after applying different artifact correction
methods.

2.7.3. INPS reduction
To quantify changes and corrected improvements of BCG arti-

facts, the following Normalized Power Spectrum ratio (INPS) was
computed as (Srivastava et al., 2005; Tong et al., 2001):

INPS = �N
i=1 PSD

before BCG reduction
i

�N
i=1 PSD

after BCG reduction
i

(4)

where N is the number of harmonics of ECG and PSDi is the power
spectral density of the ith ECG harmonic.

2.7.4. Power reduction in motion traces
Motion artifacts affect power spectrum significantly. To deter-

mine the efficiency of the rtAAS + rtICA for reducing such artifacts,
we compared the power between 0.488 and 40.039 Hz using dif-
ferent algorithm in traces which were contaminated with motion
artifacts.

3. Results

Fig. 5 shows a 4 s long segment of RecView-corrected EEG data
(i.e., 22 channels) acquired simultaneously with fMRI, as well as the
same trace of raw EEG recordings after removing imaging artifacts,
rtAAS + rtICA corrected signal, AAS for imaging artifacts and auto-
matic ICA corrected EEG data, and, finally, the clean EEG data using
the proposed offline procedure.

Fig. 6 shows 22 ICs retrieved from RecView-corrected data with
SOBI using equivalent traces presented in Fig. 5. In this example,
IC 2, 5, and 6 were identified as eye artifact; IC 1, 3, and 7 were
classified as residual BCG artifact; and IC22 were determined as a
vibration noise at 26 Hz.

Table 3 shows the number of eye blinks detected using auto-
matic rtICA method, as well as the number of actual blinks. Also
detailed is the percentage of correctly detected eye blinks for the
second and fourth runs (i.e. eyes open runs) for the six healthy sub-
jects. The results demonstrate that rtICA effectively removes eye
blink artifacts. Accurately detected eye blinks for all subjects were
more than 94%.

Fig. 7 compares the performance of the BrainVision rtAAS, the
rtAAS + rtICA and the offline methods in terms of INPS ratio. The
INPS ratios for artifact correction methods were computed with
respect to the EEG data obtained after removing imaging artifacts
via offline AAS.

Fig. 8 demonstrates that, for most subjects, the rtAAS could not
reduce effects of motion artifact on power value. However, the
rtAAS + rtICA and the offline automatic ICA can reduce power during
motion traces and can make it approximate the power value based
on the offline AAS + Filtering + ICA artifact correction. The rtICA can
significantly reduce effect of motion artifacts in all subjects.

Fig. 9 provides an example of the power spectral density of
EEG data for a subject during eyes closed run using various artifact
removal algorithms and shows that the rtAAS + rtICA can effectively

reduce artifacts in different EEG frequency bands without affecting
the neuronal alpha and beta activities.

Finally, Fig. 10 illustrates the power in several EEG bands before
and after artifact correction. From Fig. 10(a), it can be observed
that, for all subjects, the RecView-corrected EEG data have the
highest power value in the delta frequency band when compared
to the rtAAS + rtICA and two  other artifact correction methods.
The rtAAS + rtICA and offline automatic ICA methods reduce this
power and make it approximate the EEG data after using the
AAS + Filtering + ICA artifact correction. Notably, the delta power
reflected mostly ocular and motion artifacts. Fig. 10(b) demon-
strates theta power of corrected EEG data using a number of
algorithms. BCG artifacts affect the theta band power. Again, the
rtAAS + rtICA can reduce artifacts more effectively than only the
rtAAS and the offline automatic ICA. Muscle and residual imaging
artifacts primarily affect amplitude of power spectrum in the beta
frequency band. It is critical that the rtICA algorithm not mistakenly
remove brain activity, a significant portion of which is reflected
in the alpha band power, shown in Fig. 10(c). The figure illus-
trates that even though the alpha power value was  reduced using
the rtAAS + rtICA and offline automatic ICA, the value does not dip
below alpha power using the offline AAS + Filtering + ICA artifact
correction. This amount serves as our reference for nearly-artifact-
free EEG data. Furthermore, Fig. 10(c) and (d) demonstrate that
without the rtAAS, the rtICA performs poorly when used to reduce
effects of artifacts on the alpha and beta frequency bands. From
Fig. 10(d), we  can observe that the rtAAS + rtICA could more effec-
tively reduce such artifacts when compared to the performance of
the rtAAS and rtICA.

4. Discussion

Few methods have been developed for real-time removal of BCG
and imaging artifacts from EEG data recorded during fMRI. This has
limited the application of real-time EEG-fMRI systems. We  propose
a novel algorithm based on ICA for attenuating all types of artifact
in EEG data acquired during fMRI scans. The proposed real-time
ICA method can further be utilized for any application requiring
real-time ICA decomposition.

Although the rtAAS is supposed to reduce BCG artifacts, we
can see in Fig. 7 that the average INPS value is less than zero for
two subjects when using the rtAAS. Averaging the INPS among six
subjects shows 4.4 times larger INPS reduction was achieved by
using rtAAS + rtICA compared to rtAAS. For subject 1, the enormous
amount of motion artifacts prevents the RecView from performing
well. Furthermore, the ECG signal from subjects 1 and 4 are severely
distorted, which makes detecting R-peak and creating accurate
BCG artifact template in real time impossible. Except for subject
4, INPS reduction by the rtAAS + rtICA and offline automatic ICA is
comparable with that of the AAS + Filtering + ICA method. The poor
performance of the rtAAS + rtICA in terms of INPS for subject 4 could
be the result of the low performance of the rtAAS.

Eye blink, motion and muscle artifacts are problematic and
obscure the EEG signal quality significantly, but so far, there is no
robust real-time method for removing such artifacts. The results
of removing such artifacts in Table 3, Figs. 8 and 10(d) show that
the rtICA can substantially reduce effects of these artifacts on EEG
signal.

Based on evaluation metrics, the rtAAS + rtICA has superior per-
formance when compared to the rtAAS and the rtICA. One reason
for this phenomenon is that either the ICA or AAS might not effec-
tively reduce BCG and imaging artifacts for some subjects. Thus,
both methods complement each other when removing imaging,
BCG, and other artifacts.
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Fig. 5. Representative 4-s example traces of EEG data recorded during fMRI acquisition (subject 4 during eyes open run) after applying different offline and real-time artifact
correction methods.

Fig. 6. 22 ICs decomposed from 22 channels RecView-corrected EEG data (the same trace as Fig. 5) using rtICA in real time.



A. Mayeli et al. / Journal of Neuroscience Methods 274 (2016) 27–37 35

Fig. 7. INPS Reduction for all channels using different artifact correction methods versus the EEG data after removing imaging artifacts.

Fig. 8. Compression of power during motion traces using AAS + rtICA, RecView and offline artifact correction methods with power without any correction (EEG data after
applying AAS for imaging artifact correction).

Fig. 9. An example of power spectral density of electrode O1 (for subject 2) during eyes-closed runs using different artifact removal algorithms.
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Fig. 10. The impact of different artifact correction on EEG power in (a) delta (b) theta (c) alpha and (d) beta frequency bands. Bar heights represent averages across channels,
and  error bars represent the standard error across ICA windows. Results are shown for all 6 subjects using average data from all 22 channels and all 4 resting state runs.

It is likely that our proposed real-time technique might not
perform as efficiently as offline artifact detection techniques.
Admittedly, several factors can lessen the method efficiency and
can be further optimized. The most important factor is the accu-
racy of the real-time IC classification that separates various artifacts
from the ICs describing neuronal activity. The classification crite-
ria and numerical threshold settings used in this work will need to
be optimized and refined further. For instance, recording test data
before starting the actual experiment and using the test data as an
input for a machine learning algorithm for classifying brain activity
and artifact ICs may  improve the efficiency of the method. Using
mutual information appears helpful in this regard (Abbasi et al.,
2015; Liu et al., 2012).Another important factor is the algorithm
speed. When the algorithm is implemented in MATLAB, less than
1 s is required for removing artifacts from 4 s of EEG data; between
2 s and 4 s is required for this when running our stand-alone and
proof-of-concept software implementation written in Python. Per-
forming the ICA decomposition using the SOBI requires the greatest
amount of time. Thus, implementing this particular code (i.e., ICA
decomposition using the SOBI) in Cython (Behnel et al., 2011) or
assisting C might aid in speeding up the algorithm. By increasing
the method speed, we can apply ICA on 31 channels instead of
22 channels. This could improve the performance of the method
for artifact correction. The recent study demonstrates that Online
Recursive ICA (ORICA) can be successfully implemented in real time
for source separation, but more investigations are needed to eval-
uate the ORICA efficiency for distinguishing ICs related to artifacts
from brain activities (Hsu et al., 2016). Even though still there are
opportunities to speed up the algorithm, the method can be used for
real-time neurofeedback application and real-time monitoring of
brain activity since the rtICA updates EEG results in the comparable
time with fMRI (which is equal to TR).

5. Conclusion

Recording EEG during fMRI acquisition leads to EEG data con-
tamination with large fMRI environment artifacts. Most EEG-fMRI
studies have reduced artifacts offline; however only a few have
involved real-time correction. We  have introduced ICA-based real-

time EEG artifact correction during fMRI. This novel approach
was successfully implemented and improved real-time EEG arti-
facts detection and removal during fMRI on all 6 healthy subjects.
The proposed algorithm can be effectively implemented for vari-
ous applications that require a real-time EEG signal with artifacts
suppressed (e.g., neurofeedback and online monitoring of brain
activity). Our work represents an important first step towards
a wider use of ICA methods in real-time EEG-fMRI applications,
such as determining the (functional) neural correlates of the EEG
rhythms used in rtEEG neurofeedback and rtfMRI data.
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A B S T R A C T

Altered resting-state functional connectivity in posttraumatic stress disorder (PTSD) suggests neuropathology of
the disorder. While seed-based fMRI connectivity analysis is often used for the studies, such analysis requires
defining a seed location a priori, which restricts search scope and could bias findings toward presupposed areas.
Recently, a comprehensive exploratory voxel-wise connectivity analysis, the connectome-wide association ap-
proach, has been introduced using multivariate distance matrix regression (MDMR) for resting-state functional
connectivity analysis. The current study performed a connectome-wide investigation of resting-state functional
connectivity for war veterans with and without PTSD compared to non-trauma-exposed healthy controls using
MDMR.

Thirty-five male combat veterans with PTSD (unmedicated), 18 male combat veterans without PTSD (ve-
terans control, VC), and 28 age-matched non-trauma-exposed healthy males (NC) participated in a resting-state
fMRI scan. MDMR analysis was used to identify between-groups differences in regions with altered connectivity.
The identified regions were used as a seed for post-hoc functional connectivity analysis.

The analysis revealed that PTSD patients had hypoconnectivity between the left lateral prefrontal regions and
the salience network regions as well as hypoconnectivity between the parahippocampal gyrus and the visual
cortex areas. Connectivity between the ventromedial prefrontal cortex and the middle frontal gyrus and between
the parahippocampal gyrus and the anterior insula were negatively correlated with PTSD symptom severity. VC
subjects also had altered functional connectivity compared to NC, including increased connectivity between the
posterior insula and several brain regions and decreased connectivity between the precuneus region and several
other brain areas.

The decreased connectivity between the lateral prefrontal regions and the salience network regions in PTSD
was consistent with previous reports that indicated lowered emotion-regulation function in these regions. The
decreased connectivity between the parahippocampal gyrus and visual cortex supported the dual representation
theory of PTSD, which suggests dissociation between sensory and contextual memory representations in PTSD.
The theory also supposes that the precuneus is a region that triggers retrieval of sensory memory of traumatic
events. The decreased connectivity at the precuneus for VC might be associated with suppressing such a process.

1. Introduction

Posttraumatic stress disorder (PTSD) is one of the most prevalent
mental disorders for war veterans. A screening for mental health pro-
blems by the US military suggested 9.8% of veterans returning from
Iraq, 4.7% from Afghanistan, and 2.1% from other locations were at
risk of PTSD (Hoge et al., 2006). Several studies have suggested a

biological basis for PTSD (Pitman et al., 2012 for review), including
neuroimaging studies (e.g., Hayes et al., 2012; Lanius et al., 2006;
Liberzon and Sripada, 2008; Patel et al., 2012). Nonetheless, ongoing
research is needed to better understand the complex neurobiological
abnormalities that underlie this costly and chronic condition.

One of the types of neuroimaging studies that is providing abundant
insights into the neuropathology of intrinsic brain activity in PTSD is
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resting-state functional magnetic resonance imaging (rsfMRI), which
measures blood oxygenation level dependent (BOLD) signal while a
subject does not perform any explicit task. This includes studies using
voxel-wise resting-state signal measurement such as amplitude of low-
frequency fluctuation (ALFF) (Zou et al., 2008) and regional homo-
geneity (ReHo) (Zang et al., 2004). Meta-analyses of these studies
combined with positron emission tomography (PET) studies (Koch
et al., 2016; Wang et al., 2016) showed that PTSD patients had in-
creased resting-state signal fluctuation or activity in the amygdala and
the parahippocampal gyrus and decreased fluctuation or activity in the
superior frontal gyrus and the middle frontal gyrus, although there is
significant variability across studies. Decomposition of spatial coacti-
vation patterns, such as independent component analysis (ICA), was
also used in an rsfMRI study (Calhoun and Adali, 2012). Although ICA
is typically employed to extract the spatial pattern of a functional
network, it can also be used to evaluate connectivity with a dual re-
gression technique (Filippini et al., 2009), in which correlations be-
tween the global network (independent component) time-course and
voxel-wise time-courses are examined. Tursich et al. (2015) indicated
that the connectivity of the salience network (SN) with the posterior
insula and the superior temporal gyrus were negatively correlated with
hyperarousal symptoms in PTSD. Graph analysis for resting-state con-
nectivity (Fornito et al., 2013) was also employed in an rsfMRI study of
PTSD (Lei et al., 2015), indicating that the resting-state functional
network for PTSD shifted toward small-worldization with increased
centrality in the default-mode network (DMN) and the SN.

Another commonly employed measure of rsfMRI is functional con-
nectivity (Friston, 1994), which evaluates the correlation of signal time-
courses between a seed region and other brain regions. Seed-based
connectivity analyses also showed aberrant resting-state connectivity
for PTSD. Brown et al. (2014) indicated increased connectivity between
the basolateral amygdala and the anterior cingulate cortex (ACC),
dorsal ACC, and dorsomedial prefrontal cortex as well as decreased
connectivity between the amygdala and the left inferior frontal gyrus
for PTSD patients compared to trauma-exposed controls. Zhang et al.
(2016) found decreased connectivity between the ventral anterior in-
sula and the ACC, and between the right posterior insula and the left
inferior parietal lobe and the postcentral gyrus. Kennis et al. (2015)
showed decreased connectivity between the caudal ACC and the pre-
central gyrus and between the perigenual ACC and the superior medial
frontal gyrus and middle temporal gyrus.

These findings suggest several converging regions of pathological
resting-state activity or connectivity for PTSD such as hyperactivity and
increased connectivity in the SN regions, including the amygdala,
anterior insula, and ACC, and hypoactivity and decreased connectivity
in the prefrontal emotion-regulation areas including lateral prefrontal
regions and dorsal and ventral medial prefrontal regions. Deficits in
emotion regulation function due to hyperactive and hyperconnected SN
and its hypoconnectivity with lateral prefrontal regions are thought to
underlie the hyperarousal symptoms of PTSD (Fonzo et al., 2010;
Lanius et al., 2006; Zhu et al., 2015).

A limitation of previous functional connectivity studies, however, is
that seed-based resting-state connectivity analysis requires the a priori
definition of a seed location. This restricts the scope of investigation to
relations with the presupposed seed area and could bias findings toward
the seed area. In particular, a priori predictions about the functioning of
regions implicated in emotion regulation may have resulted in the over-
representation of these regions in our current understanding of resting
state functional connectivity in PTSD. Indeed, abnormal brain func-
tioning in PTSD is not limited to the emotion regulation network. Task-
based fMRI studies have suggested abnormal functioning in regions
implicated in attention and working memory (Aupperle et al., 2012) as
well as memory representation (Brewin, 2011; Whalley et al., 2013),
such as the medial temporal and posterior brain regions including
hippocampal, parietal, and occipital areas. Those low-level sensor-
imotor regions are rarely identified as seeds for functional connectivity

analyses in studies of PTSD. While voxel-wise whole-brain investiga-
tions of resting-state activity with ALFF, ReHo, and PET (Bonne et al.,
2003; Kohn et al., 2014; Wang et al., 2016) often suggested altered
resting-state activity in the sensorimotor, visual cortex, and hippo-
campal/parahippocampal areas, these measures did not elucidate
functional connectivity of the regions. Connectivity analysis using ICA
also does not capture region-by-region functional connectivity. Instead,
it analyzes connectivity between a global brain network and a voxel-
wise signal.

To complement these analyses, and to resolve the limitation of seed-
based connectivity analysis, yet another rsfMRI analysis has been pro-
posed: a connectome-wide approach that investigates comprehensive
voxel-wise connectivity alterations (Shehzad et al., 2014). This ap-
proach utilizes a multivariate distance matrix regression (MDMR)
analysis (Anderson, 2001) and can examine voxel-wise connectivity
alterations in the whole brain without a priori seed definition.
Satterthwaite et al. (2015) applied this analysis to major depressive
disorder (MDD), PTSD, and female healthy control subjects and found
that decreased connectivity between the amygdala and the dorsolateral
prefrontal cortex, ACC, and anterior insula correlated with depression
symptom severity. They also showed that elevated connectivity be-
tween the amygdala and the ventromedial prefrontal cortex correlated
with anxiety symptom severity.

The aim of this study was to examine altered resting-state con-
nectivity of male war veterans with and without PTSD and male age-
matched non-trauma-exposed healthy controls using a connectome-
wide approach. We expected connectome-wide investigation of altered
resting-state functional connectivity to reveal a comprehensive view of
the neuropathology of intrinsic brain functional connectivity among
people with PTSD without bias introduced via hypothesis testing.

In addition to examining veterans with combat-related PTSD, we
also examined altered resting-state connectivity among combat ve-
terans without PTSD. While a population with trauma experience
without PTSD has often been considered a control group for under-
standing atypical functioning among people with PTSD, several studies
have demonstrated atypical brain activation in this group compared to
non-trauma-exposed people. For example, war-deployed soldiers who
did not develop PTSD showed lowered midbrain activation in a working
memory task and decreased connectivity between the midbrain region
and the prefrontal cortex compared to non-deployed soldiers (van
Wingen et al., 2012). Meta-analysis of region-wise resting-state brain
activation (Patel et al., 2012) indicated higher prefrontal activity
among trauma-exposed people without PTSD compared to non-trauma-
exposed controls. A resting-state functional connectivity analysis with
an ACC seed (Kennis et al., 2015) also indicated that war veterans
without PTSD had a different pattern of resting-state connectivity
compared to civilian controls. The differences include decreased con-
nectivity between the caudal ACC and the precentral gyrus and between
the perigenual ACC and the superior medial frontal and the middle
temporal gyrus, and increased connectivity between the rostral ACC
and precentral and middle frontal regions. These data suggest that war
veterans without PTSD could have altered intrinsic brain activation
compared to both people with PTSD and non-trauma-exposed controls.
Importantly, altered brain functioning in PTSD and trauma-exposed
controls may not be incremental. Trauma-exposed controls without
PTSD could have a specific brain alteration that does not exist in PTSD,
which may function as an adaptive change to trauma exposure or as a
protective factor that reduces the likelihood of developing PTSD sub-
sequent to trauma exposure. The current study, therefore, employed
three groups of male subjects: war veterans with PTSD (unmedicated),
war veterans without PTSD, and age-matched non-trauma-exposed
healthy controls. The study examined comprehensive connectome-wide
differences in resting-state functional connectivity between these
groups.
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2. Material and methods

2.1. Participants

Thirty-nine male combat veterans with PTSD and 22 male combat
veterans without PTSD (veterans control, VC) participated in the
resting-state fMRI scan as part of a neurofeedback training study (to be
published separately). In addition, 28 age-matched non-trauma-ex-
posed healthy males who had participated in another study (Misaki
et al., 2016) were employed as non-trauma-exposed healthy controls
(NC). Four PTSD and 4 VC participants were excluded from the analysis
due to excessive head motion (> 40 censored time points, see below).
Table 1 shows numbers of analyzed participants and mean ages for each
group. There was no significant age difference between the groups. The
study was approved by the Western Institutional Review Board,
Puyallup, WA. All procedures with human subjects were conducted
according to the code of ethics of the World Medical Association (De-
claration of Helsinki) for experiments involving humans. All subjects
gave written informed consent to participate in the study and received
financial compensation.

The psychiatric diagnosis was established according to Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition, Text
Revision (American Psychiatric Association, 2000) criteria using both
the Structured Clinical Interview for DSM-IV Disorders (First et al.,
1996) administered via a trained clinical interviewer and an un-
structured interview with a psychiatrist. Exclusion criteria included
serious suicidal ideation, psychosis, major medical or neurological
disorders, general MRI exclusions, and exposure to psychotropic med-
ications or to any medication likely to influence cerebral function or
blood flow within three weeks (8 weeks for fluoxetine). Two VC sub-
jects endorsed a history of alcohol abuse, one VC subject endorsed a
history of alcohol dependence, one VC subject endorsed a history of
major depressive disorder (MDD), and one VC subject endorsed a his-
tory of alcohol abuse and major depressive disorder. These morbidities
for VC were fully remitted at study time. Additional exclusion criteria
applied to the NC were history of war deployment or current or past
personal or family (i.e., first-degree relative) history of axis I psychiatric
conditions, as assessed using the Family Interview for Genetics Studies
(FIGS).

2.2. Symptom measurement

PTSD symptoms were measured with the Clinician-Administered
PTSD Scale (CAPS) for DSM-IV (Blake et al., 1995) and the PTSD
Checklist - Military Version (PCL-M) (Weathers et al., 1993). The CAPS

is a well-established semi-structured clinical interview that is used to
determine the presence of traumatic event exposure, characteristics of
the traumatic event, and frequency and severity of PTSD symptoms and
diagnoses. The CAPS has excellent psychometric properties including
convergent and discriminant validity, test-retest and interrater relia-
bility, and internal consistency (Weathers et al., 2001). The CAPS was
administered by research staff trained to mastery in administration of
the interview. The PCL-M is a 17-item questionnaire that was used to
measure DSM-IV-defined PTSD symptom severity (American
Psychiatric Association, 2000). Subjects indicate the degree to which
they have been bothered by each symptom in the past week on a 1 (not
at all bothered) to 5 (extremely bothered) scale. The PCL-M has shown
strong convergent and divergent validity (Blanchard et al., 1996;
Ruggiero et al., 2003).

Depression and anxiety symptoms were also measured with the
Montgomery-Asberg Depression Rating Scale (MADRS) (Montgomery
and Asberg, 1979) and the Hamilton Anxiety Scale (HAM-A) (Hamilton
et al., 1976), respectively. The MADRS and HAM-A are well-established
measures of the severity of depressive symptoms and anxiety symptoms
with adequate psychometric properties (Jiang and Ahmed, 2009; Maier
et al., 1988; Montgomery and Asberg, 1979; Reimherr et al., 2010).
Table 1 includes mean symptom scores for each group.

2.3. MRI measurement

The resting-state session took place prior to any task sessions.
During the resting-state fMRI, participants were instructed not to move
and to relax and rest while looking at a fixation cross on the screen.
Magnetic resonance imaging was conducted on a whole-body 3 T
MR750 MRI scanner (GE Healthcare, Milwaukee, WI) equipped with
32-channel receive-only head array coils (GE Healthcare, Nova
Medical, Wilmington, MA). A single-shot gradient-recalled echo-
planner imaging (EPI) sequence with sensitivity encoding (SENSE) was
used for fMRI. In the study for veterans, the EPI imaging parameters
were TR = 2000 ms, TE = 30 ms, FA = 90°, FOV = 240 mm, 34 axial
slices with 2.9 mm thickness with 0.5 mm gap, matrix = 96 × 96,
SENSE acceleration factor R= 2. The EPI images were reconstructed
into a 128 × 128 matrix resulting 1.875 × 1.875 × 3.4 mm3 voxel
volume. The resting fMRI run time was 6 min 50 s (205 volumes). In the
study for NC subjects, the EPI imaging parameters were TR = 2000 ms,
TE = 25 ms, FA = 75°, FOV = 240 mm, 34 axial slices with 2.9 mm
thickness without gap, matrix = 96 × 96, SENSE acceleration factor
R= 2. The EPI images were reconstructed into a 128 × 128 matrix
resulting in 1.875 × 1.875 × 2.9 mm3 voxel volume. The resting fMRI
run time was 7 min 30 s (225 volumes). We used only the first 205

Table 1
Demographic characteristics of war veterans with PTSD, war veterans without PTSD (veteran controls; VC), and non-trauma-exposed healthy controls (NC). CAPS score was not available
for two PTSD and two VC subjects. PCL-M score was not available for one PTSD and two VC subjects. MADRS score was not available for one PTSD and one VC subjects. Mean ± SD for
each group and statistics for the difference between the groups are shown except for age and head motion. Both age and head motion were not significantly different between groups with
ANOVA (F(2,78) = 1.39, p= 0.260 for age and F(2,78) = 1.29, p = 0.281 for motion).

PTSD VC NC PTSD - VC PTSD – NC VC - NC

Number of participants 35 18 28
Age

(range)
31.9 ± 7.1
21–48

33.4 ± 9.5
22–55

29.0 ± 11.0
19–53

CAPS 55.2 ± 18.4 4.8 ± 4.9 NA t(47) = 10.73
p < 0.001

PCL-M 48.0 ± 14.2 19.6 ± 2.6 NA t(48) = 7.87
p < 0.001

MADRS 20.4 ± 9.6 1.4 ± 1.8 1.5 ± 1.9 t(76) = 9.87
p < 0.001

t(76) = 11.43
p < 0.001

t(76) = −0.04
p = 0.999

HAM-A 18.2 ± 7.8 1.9 ± 1.5 2.2 ± 2.5 t(76) = 10.17
p < 0.001

t(76) = 11.67
p < 0.001

t(76) = 0.14
p = 0.989

Motion (average FD) 0.06 ± 0.03 0.07 ± 0.02 0.05 ± 0.02

Abbreviations: CAPS: Clinician-Administered PTSD Scale, PCL-M: PTSD Checklist - military version, MADRS: Montgomery-Asberg Depression Scale, HAM-A: Hamilton Anxiety Rating
Scale, FD: frame-wise displacement of fMRI images (mm/volume), NA: not available.
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volumes for the analysis to equate the number of volumes between the
studies. Physiological pulse oximetry and respiration waveforms were
simultaneously recorded (40 Hz) in both studies. A photo-
plethysmograph with an infrared emitter placed under the pad of a
participant's finger was used for pulse oximetry, and a pneumatic re-
spiration belt was used for respiration measurements.

To provide anatomical reference for fMRI data, T1-weighted MRI
images were acquired with a magnetization-prepared rapid gradient-
echo (MPRAGE) sequence. The following parameters were used:
FOV = 240 × 192 mm, matrix = 256 × 256, 120 axial slices, slice
thickness = 0.9 mm, 0.9375 × 0.9375 × 0.9 mm3 voxel volume, TR
= 5 ms, TE = 2.0 ms, R= 2, flip angle = 8°, delay time = 1400 ms,
inversion time = 725 ms, sampling bandwidth = 31.2 kHz, scan
time = 5 min 40 s.

2.4. MRI image processing

Analysis of Functional NeuroImages (AFNI) software (http://afni.
nimh.nih.gov/afni/) was used for imaging analysis. We utilized the
afni_proc.py command to make a data processing script and used de-
fault parameters of this command except where noted. Initial five vo-
lumes were excluded from analysis. Outlier time points were replaced
with interpolation (despike). RETROICOR (Glover et al., 2000) was
applied to remove respiration- and cardiac-induced noise in the BOLD
signal. Physiological fluctuations correlated with low-frequency
changes in respiration depth were regressed out from the BOLD signal
using respiration volume per time (RVT) correction (Birn et al., 2008).
Slice-timing differences were corrected by aligning to the first slice.
Motion correction was applied by aligning all functional volumes to the
first volume. Nonlinear warping to the MNI template brain with re-
sampling to 2 mm3 voxels was done with the Advanced Normalization
Tools (ANTs) software (Avants et al., 2008) (http://stnava.github.io/
ANTs/). We used the non-linearly aligned and averaged MNI152 brain
provided with the FSL package (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)

as a template. Spatial smoothing (4 mm FWHM) and scaling to percent
change were applied to the data.

Further noise reduction was applied by regressing out three prin-
cipal components of the ventricle signal, local white matter average
signal (ANATICOR) (Jo et al., 2010), 12 motion parameters (3 shift and
3 rotation parameters with their temporal derivatives), and low-fre-
quency fluctuation (3rd-order polynomial model) from the signal time
course. White matter and ventricle masks were extracted using Free-
Surfer 5.3 (http://surfer.nmr.mgh.harvard.edu/) from the anatomical
image of individual subject and then warped to the normalized fMRI
image space. Any fMRI time point with large motion (> 0.25 mm
frame-wise displacement (FD)) along with the following point was
censored within the regression (Power et al., 2015). FD was calculated
as the root sum of squared temporal differences of six motion para-
meters.

2.5. Effect of scan parameter difference

Since fMRI scan parameters between the veteran groups (PTSD and
VC) and the NC group were different, we examined signal difference
between the groups specifically in their spatial smoothness and tem-
poral signal to noise ratio (TSNR). It has been indicated that variable
spatial smoothness and TSNR are major sources of inter-scanner
variability in activation estimation of fMRI (Friedman and Glover,
2006; Friedman et al., 2006). We reasoned that if these properties were
similar between the groups, connectivity difference between the groups
could not be attributed to scan parameters difference. Spatial smooth-
ness was evaluated using AFNI 3dFWHMx for the processed image after
noise components were regressed out. Smoothness estimates were re-
stricted to brain voxels that were covered by all subjects and censored
volumes were excluded from the estimation. TSNR was defined as the
mean signal divided by the temporal standard deviation for each voxel.
TSNR was calculated for functional images before applying regression
and censored volumes were excluded. We used the median TSNR in

Fig. 1. MDMR pseudo-F value map for the main effect of groups (PTSD, VC, NC) thresholded with voxel-wise p < 0.005 and cluster-size p < 0.05.
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gray matter voxels. Friedman and Glover (2006) indicated that by
covarying this measure during regression analysis one could eliminate
significant effect of inter-scanner variability on activation estimation.
We used Welch's two-tailed t-test to examine group difference of the
mean smoothness in x, y, and z directions and the median TSNR in gray
matter voxels.

2.6. MDMR analysis

MDMR analysis (Anderson, 2001; Shehzad et al., 2014) was applied
to investigate comprehensive voxel-wise resting-state connectivity al-
teration between PTSD, VC, and NC groups. The processed resting-state
fMRI image was down-sampled to 4 mm3 voxels. In order to avoid
mixing noise outside the brain, we applied an anatomical brain mask to
the functional image before resampling. Since we had already applied
local white matter signal and ventricle signal regression at preproces-
sing, masking these regions was not applied at resampling. This down-
sampling process was necessary because the whole-brain voxel-wise
connectivity matrix in the original resolution was computationally too
large for current hardware. To further reduce data size, only the voxels
in gray matter regions were extracted from the down-sampled image.
The gray matter mask was extracted from the MNI152 template brain
provided with FSL. This masking resulted in extracting 18,693 voxels
that were subject to the MDMR analysis.

We followed the procedure introduced in Shehzad et al. (2014) for
the MDMR analysis, which is briefly reproduced here. MDMR is a mass
voxel-wise analysis as it is performed for each voxel independently.
Unlike a seed-based analysis that has many correlation statistics for one
voxel, MDMR has a single multivariate omnibus statistic for each voxel.

In each voxel, a connectivity map from that voxel to all other voxels
was made with Pearson's correlations between signal time-courses of
the voxels. The dependent variable of MDMR is a distance matrix of the
connectivity maps between subjects. The distance of the maps between
subject i and j, (dij) was calculated with Euclidean distance of Fisher's z-
transformed connectivity maps. The MDMR analysis evaluates the as-
sociation between the distance matrix (dissimilarities of connectivity
maps across subjects) and the predictor variables in the design matrix,
X, using a pseudo-F value statistic, =

−

− −

F tr HG m
tr I H G n m

( ) / ( 1)
[( ) ] / ( ) , where H=X

(XTX)−1XT is the hat matrix that maps response values (G) to the fitted
value space, m is the number of columns in X, and tr is the trace of
matrix. G is the mean-centered distance matrix as G = CAC, where

= −( )C I 11n
T1 , = −( )A dij

1
2

2 , n is the number of subjects, I is the n× n
identity matrix and 1 is a vector of n 1 s. In the current study, the design
matrix X included two columns of group factors for PTSD and VC, in
which 1 indicated PTSD and 0 others, and 1 indicated VC and 0 others,
respectively. This coding means that NC is a reference group and the
effects of PTSD and VC relative to NC were evaluated. X also included
columns of age and motion size (average FD) as nuisance variables as
well as all 1 s for the intercept.

Individual effect of regressors was estimated using a partial design
matrix. Hat matrix with effects of no interest regressors was subtracted
from the full hat matrix as HI=H−HN, where =

−H X X X X( )N N N
T

N N
T1 ,

and XN is a design matrix only with age, motion, and intercept columns.
Pseudo-F value for the sum of the effect of interest, namely the main
effect of the group difference, was then calculated as

=

− −
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tr I H G n m
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[( ) ] / ( )
I I , where mI (=2) is the number of effect of interest

regressors.
Statistical tests for the pseudo-F value were performed with a per-

mutation test. Nuisance regressors in the permutation test need to be
handled differently from the regressors of interest because effect of
interest should be evaluated after excluding nuisance effects. We used
the Smith procedure (Winkler et al., 2014), in which regressors of in-
terest were orthogonalized with regard to nuisance regressors and then
the orthogonalized regressors of interest were permuted randomly.
10,000 random permutations were performed in the analysis.

These procedures were repeated for all voxels as a seed, and pseudo-
F values (with respective p-values) were mapped onto the brain to make
a statistical parametric map. We used a computationally efficient
method introduced by Shehzad et al. (2014), in which evaluations for
all voxels of all permutations were performed in one-time matrix
multiplication. The MDMR statistical map was thresholded with voxel-
wise p < 0.005, and then with cluster-size corrected p < 0.05.
Cluster-size corrected p-value was evaluated with the same permutation
procedure as the voxel-wise evaluation to avoid inflated false positive
rate (Eklund et al., 2016).

2.7. Post-hoc seed-based analysis

MDMR statistical map indicates that a whole-brain connectivity
pattern at a voxel is altered between the groups. However, it does not
show which specific connectivity is altered. To elucidate which voxel-
by-voxel connectivity was altered between the groups, post-hoc seed-
based connectivity analysis was performed for the significant regions of
the MDMR statistical map. Note that this analysis was performed only
for a post-hoc investigation and restricted to the regions with significant
MDMR statistics so that we could avoid multiple testing problems
across seed-based analyses that could arise if we picked arbitrary re-
gions for seed-based analysis.

The post-hoc analysis was performed with the original resolution
whole-brain functional images (not restricted to gray matter). Seed
regions were placed at peak locations of the significant clusters in the
MDMR statistical map of the group main effect. Peak coordinates in
each significant cluster separated by at least 30 mm were extracted.
Seed area was a 6 mm-radius sphere centered at the peak coordinates of

Table 2
Peak locations of significant clusters for the main effect of groups in the MDMR analysis.
Local maximum positions at least 30 mm apart from each other were extracted from
significant clusters. Cluster-size p-values were evaluated by permutation test with 10,000
random permutations.

Peak location
(MNI, mm)

Brain region Pseudo-F Cluster
size
(4 mm3

voxel)

Cluster-size
p-value

x y z

12 −28 −2 R Thalamus 2.545 520 0.0001
−28 −68 −14 L Fusiform 2.377

4 −68 2 R Lingual 2.335
−36 −16 −26 L Parahippocampal 2.18

44 −40 −22 R Fusiform 2.176 146 0.0014
24 −52 2 R Parahippocampal 1.915

−4 60 −10 L vmPFC (BA11) 2.341 127 0.0020
−20 48 18 L Superior Frontal

(BA10)
2.077 54 0.0100

−16 12 6 L Lentiform Nucleus 2.188
−8 −20 62 L SMA 2.252 50 0.0120
56 4 −34 R Middle Temporal 2.171 49 0.0124

−44 −8 −6 L Insula 3.564 48 0.0126
−24 0 46 L Middle Frontal

(BA6)
2.083 46 0.0138

−52 20 2 L Inferior Frontal
(BA47)

2.088 44 0.0155

56 −24 10 R Transverse
Temporal (BA41)

2.937 41 0.0173

−52 −76 −6 L Inferior Temporal/
Middle Occipital

2.216 38 0.0211

44 −8 −2 R Insula 2.69 36 0.0236
−48 −24 6 L Superior Temporal 2.177 34 0.0252
−32 12 26 L Middle Frontal

(BA44)
1.988 30 0.0330

−52 8 −26 L Middle Temporal 2.051 28 0.0382
56 0 2 R Superior Temporal 1.984 26 0.0438

−24 28 34 L Superior Frontal
(BA9)

1.927 26 0.0438

Abbreviations: L: left, R: right, BA: Brodmann area, vmPFC: ventromedial prefrontal
cortex, SMA: supplementary motor area.
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the MDMR statistical map. Average signal time-course of the seed area
was used as a reference signal to calculate correlations with other
voxels. Fisher's z-transformation was applied to the correlation coeffi-
cient to make a connectivity map for each subject. Voxel-wise general
linear model analysis was performed for the connectivity map with the
same design matrix as the MDMR analysis. t-value maps of each group
contrast, PTSD-NC, VC-NC, and PTSD-VC, were calculated and thre-
sholded with voxel-wise p < 0.005 and cluster-size corrected
p < 0.016 for multiple testing of three groups. Cluster-size corrected p-
value was evaluated with the permutation test (10,000 permutations)
using the Smith procedure (Winkler et al., 2014).

3. Results

CAPS, PCL-M, MADRS and HAM-A were significantly higher for the
PTSD group compared to the VC and NC groups, and not significantly
different between the VC and NC groups. Amount of head motion

(average FD) was not significantly different between groups (Table 1).
Spatial smoothness and TSNR of functional images were not sig-
nificantly different between the veterans and NC groups. Mean spatial
smoothness was 5.28 mm for veterans and 5.27 mm for NC (t(56.859)
= 0.331, p= 0.742). Mean gray matter median TSNR was 127.2 for
veterans and 123.3 for NC (t(56.915) = 0.64, p = 0.525).

Fig. 1 shows the thresholded map of pseudo-F value for the main
effect of group in the MDMR analysis. Peak locations of the clusters
with significant effect (cluster-size p < 0.05) are shown in Table 2.
These peak locations were used as seeds for post-hoc seed-based con-
nectivity analysis.

Fig. 2 shows seed locations and regions with significant functional
connectivity alteration for the PTSD compared to NC groups. Supple-
mentary table S1 shows peak locations in significant clusters of altered
connectivity in PTSD–NC comparison at post-hoc analysis. Significantly
decreased connectivity for PTSD was seen between the left para-
hippocampal seed and the bilateral fusiform gyrus, middle occipital,

Fig. 2. Seed locations (indicated by crosshair) on the MDMR statistical map (left) and t-value maps of the regions with significantly (voxel-wise p < 0.005 and cluster-size-corrected
p < 0.016) altered connectivity (right) for PTSD compared to NC (non-trauma-exposed controls) in post-hoc analysis. Connectivity alteration for PTSD was found for seed locations at the
left parahippocampal gyrus (A), left SMA (supplementary motor area) (B), left insula (C), left inferior frontal gyrus (D), left middle frontal gyrus (E), and left superior frontal gyrus (E).
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middle temporal, and the posterior cingulate areas (Fig. 2A). Decreased
connectivity for PTSD was also seen between the left medial frontal
(supplementary motor area; SMA) seed and the anterior cingulate and
the left anterior insula regions (Fig. 2B). Multiple left lateral prefrontal
seeds showed decreased connectivity for PTSD including between the
left inferior frontal seed and the right SMA and the left middle frontal
region (Fig. 2D), between the left middle frontal seed and the left in-
ferior frontal and the left superior temporal regions (Fig. 2E), and be-
tween the left superior frontal seed and the SMA, anterior cingulate,
anterior insula, and inferior frontal regions (Fig. 2F). These hypo-
connected regions (Fig. 2F) overlapped with salience network (SN)
regions (Menon and Uddin, 2010). Increased functional connectivity for
PTSD was seen between the left insula seed and the right middle cin-
gulate region (Fig. 2C).

Correlations between symptom severity and functional connectivity
alterations were also examined among people with PTSD for the seed
locations in Table 2. The design matrix of this analysis included
symptom scores instead of the group factor, along with age and motion
covariates. The same permutation procedure used in the post-hoc
analysis of group comparisons was used here. Fig. 3 shows seed loca-
tions and regions with connectivity significantly (voxel-wise p < 0.005
and cluster-size p < 0.05) correlated with PTSD symptom scores (C-
APS, PCL-M). Peak locations of the significant clusters in Fig. 3 are
shown in Supplementary Table S2. Connectivity between the right
parahippocampal seed and the right anterior insula was negatively
correlated with CAPS and PCL-M (Fig. 3A). Connectivity between the
ventromedial prefrontal cortex (vmPFC) seed and the left middle frontal
region was negatively correlated with CAPS scores (Fig. 3B). As a
complementary analysis, we also examined the connectivity correlation
with depression (MADRS) and anxiety (HAM-A) scores for PTSD

(Supplementary Fig. S1). Similar to CAPS and PCL-M, MADRS and
HAM-A were negatively correlated with functional connectivity be-
tween the right parahippocampal seed and the right anterior insula
(Supplementary Fig. S1A). Additionally, connectivity between the left
insula and the left middle frontal gyrus was negatively correlated with
MADRS and HAM-A (Supplementary Fig. S1B), and connectivity be-
tween the left middle frontal and the right inferior parietal regions was
negatively correlated with MADRS scores (Supplementary Fig. S1C).

Fig. 4 shows seed locations and regions with significant functional
connectivity alteration in the VC compared to NC group. Supplemen-
tary table S3 shows peak locations in significant clusters of altered
connectivity in the post-hoc VC–NC comparison. Significantly de-
creased connectivity for VC was seen between the right lingual seed and
the medial prefrontal area (Fig. 4A), between the left superior frontal
seed and the posterior default mode network areas including the pre-
cuneus, posterior cingulate, and the right inferior parietal regions
(Fig. 4B), between the left middle frontal seed and the left postcentral
region (Fig. 4D), between the right transverse temporal seed and the
precuneus (Fig. 4E), and between the left superior temporal seed and
the precuneus (Fig. 4G). Significantly increased connectivity was seen
between the left posterior insula seed and the right posterior insula,
right lingual, and right cuneus regions (Fig. 4C) and between the left
posterior insula and the right postcentral, right middle frontal, right
middle temporal, right posterior cingulate, left superior parietal, right
inferior frontal, right precuneus, and right thalamus.

No significant connectivity differences between the PTSD and VC
groups were found in the post-hoc analysis. This could be due to the
presence of remitted morbidities in the VC group, such as alcohol abuse,
alcohol dependence, and major depressive disorder. We examined as-
sociations of these morbidity histories in the VC group with the

Fig. 3. Seed locations (indicated by crosshair) on the MDMR statistical map (left) and t-value maps of the regions with significant symptom-correlated connectivity (middle) among
subjects with PTSD (voxel-wise p < 0.005 and cluster-size-corrected p < 0.05). Functional connectivity correlated with PTSD symptoms (CAPS and PCL-M) was found for seed locations
at the right parahippocampal gyrus (A) and the left ventromedial prefrontal cortex (vmPFC) (B). Right panel shows symptom association with mean connectivity (z-value residualized
with regard to age and motion covariates) in the regions shown in the maps (middle) with fitted line and its 95% confidence interval. CAPS: Clinician-Administered PTSD Scale, PCL-M:
PTSD Checklist - Military Version.
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connectivity alterations in Supplementary Figs. S2 and S3. Box plots of
these figures show distribution of mean connectivity in the regions with
significant alteration for PTSD (Supplementary Fig. S2) and VC
(Supplementary Fig. S3) compared to NC. Supplementary Fig. S3 in-
dicates that connectivity differences between VC and NC were not
driven by the subjects with remitted morbidity. Supplementary Fig. S2
indicates that connectivity for VC tended to be in between PTSD and NC
either with or without remitted morbidity, although variability in the

VC group could be increased by remitted morbidity. We further per-
formed the same MDMR and post-hoc analyses excluding VC subjects
with morbidity histories. This analysis, however, still did not show a
significant connectivity difference between the PTSD and VC groups.

4. Discussion

Connectome-wide analysis of altered resting-state functional

Fig. 4. Seed locations (indicated by crosshair) on the MDMR statistical map (left) and t-value maps of the regions with significantly (voxel-wise p < 0.005 and cluster-size-corrected
p < 0.016) altered connectivity (right) for VC (veteran controls) compared to NC (non-trauma-exposed controls) in post-hoc analysis. Connectivity alteration for VC was found for seed
locations at the left lingual gyrus (A), left superior frontal gyrus (B), left insula (C), left middle frontal gyrus (D), right transverse temporal gyrus (E), right insula (F), and left superior
temporal gyrus (G).
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connectivity for war veterans revealed decreased connectivity for PTSD
patients in lateral frontal, SMA, and SN regions, as well as decreased
connectivity between the parahippocampal and the visual cortex areas.
PTSD symptom severity was negatively correlated with connectivity
between the right parahippocampal gyrus and the right anterior insula
and between the left vmPFC and the left middle frontal gyrus in people
with PTSD. The analysis also revealed altered resting-state connectivity
for VC, including increased connectivity in the posterior insula and
decreased connectivity in the precuneus with several other brain areas,
while no significant differences between PTSD and VC groups were
observed. Because there was no significant difference in spatial
smoothness or TSNR of functional images between veterans and NC
groups, observed connectivity differences cannot be attributed to scan
parameter difference. Most of these findings were consistent with pre-
vious observations of abnormal brain activation patterns among people
with PTSD in both task-based and resting-state fMRI studies. The cur-
rent results also extended previous findings by indicating such ab-
normalities were seen in region-by-region resting-state functional con-
nectivity.

The analysis revealed decreased functional connectivity between
the parahippocampal and the occipital visual cortex regions for PTSD
compared to NC (Fig. 2A). A correlation between PTSD symptom se-
verity and decreased functional connectivity between the para-
hippocampal region and the anterior insula was also observed (Fig. 3A).
Similar dissociation between the hippocampal memory area and sen-
sorimotor and SN areas has been observed during PTSD-related flash-
backs (Whalley et al., 2013). Whalley et al. (2013) indicated that PTSD
patients showed hyperactive sensorimotor regions, including visual
cortices and hypoactive memory-associated regions (e.g., para-
hippocampal gyrus), during a trauma cue-elicited flashback experience.
This dissociation is consistent with the dual representation theory of
PTSD (Brewin et al., 2010). According to the theory, episodic memory
has dual representations of context (C-reps) supported by the medial
temporal regions, and low-level sensation (S-reps) supported by sensory
and interoceptive cortical areas. These representations are associated
with each other for a memory of common events, while the C-reps for a
memory of a traumatic event could be weakened or lost. This hypoth-
esis is supported by evidence that potentiated amygdala function as
well as suppressed hippocampal function was seen under high-level
stress situations (Brewin et al., 2010; Elzinga and Bremner, 2002; Payne
et al., 2006). The dual representation theory suggests that abnormal
memory representation for a traumatic event has strong S-reps without
associated C-reps, which underlies symptoms of re-experiencing and
hyperarousal. The current results extended this evidence by indicating
that resting-state functional connectivity between C-reps and S-reps
regions was decreased in PTSD. This suggests that the neurobiological
dissociation thought to underlie dual memory representations may be
present at rest as well as during cued memory retrieval.

The current results also showed that the PTSD group had decreased
functional connectivity across the lateral frontal areas and the SMA
with the SN (Fig. 2B, D, E, F) as well as decreased connectivity between
the vmPFC and the left middle frontal gyrus that was correlated with
PTSD symptom severity (Fig. 3B). A large literature has indicated that
lateral frontal regions, vmPFC, and SMA are associated with emotion
regulation functions, including reappraisal of emotional stimuli
(Johnstone et al., 2007; Kalisch, 2009; Kohn et al., 2014; New et al.,
2009; Wager et al., 2008). Decreased activation of these regions in
response to emotional stimuli or emotion regulation tasks among
people with PTSD has been reported (Aupperle et al., 2012; Blair et al.,
2013; Hayes et al., 2012; Patel et al., 2012; van Rooij et al., 2014). Yin
et al. (2011) showed that resting-state ALFF at the right medial frontal
gyrus was correlated with PTSD symptom severity. A meta-analysis of
regional resting-state activation (Koch et al., 2016) also indicated
lowered resting-state activity at the middle frontal gyrus for PTSD. In
contrast to hypoactive prefrontal emotion-regulating areas, a hyper-
active SN is one of the prevalent brain abnormalities observed among

people with PTSD in emotion-related tasks (Hayes et al., 2012; Lanius
et al., 2015; Patel et al., 2012). A study of resting-state functional
connectivity at the anterior insula (Sripada et al., 2012) also indicated
that PTSD had increased anterior insula connectivity with SN regions
but decreased connectivity with DMN regions, including the medial
PFC. The current results of hypoconnectivity between the lateral pre-
frontal and SN regions are consistent with these previous reports of
aberrant brain activations for PTSD.

Notably, the lowered functional connectivity of the lateral frontal
areas was lateralized to the left hemisphere in the current results.
Systematic review of brain activation patterns observed during cogni-
tive reappraisal to regulate emotional experience among healthy in-
dividuals (Ochsner et al., 2012) suggested that there are two different
tactics of reappraisal, reinterpretation and distancing. Their meta-ana-
lysis indicated that the regions involved in reinterpretation appear to be
more strongly left-lateralized in prefrontal and temporal cortices,
whereas regions involved in distancing appear to be more strongly
right-lateralized in prefrontal cortex and parietal regions. The left-la-
teralized hypoconnectivity in the current results, therefore, might
suggest that PTSD patients had reduced reinterpretation function
compared to distancing. Distancing function, however, could be highly
variable across PTSD patients. There is a subtype of PTSD patients with
dissociation symptoms (Lanius et al., 2006; Lanius et al., 2005;
Nicholson et al., 2015; Nicholson et al., 2016) who show depersonali-
zation and derealization responses to emotional or trauma-related sti-
muli and could be involuntary distancing to regulate emotional arousal.
In the current study, only 9 of the 35 PTSD subjects reported mild
dissociation symptoms. Due to the small number of subjects and mild
symptoms, we could not evaluate the difference between PTSD sub-
types. Future studies are needed to examine differences in resting-state
connectivity between subtypes of PTSD.

Increased functional connectivity at the posterior insula was ob-
served among PTSD patients (Fig. 2.C) as well as among VC subjects
(Fig. 4C, F) but in more areas for VC than PTSD. Similar differences in
resting-state insula activity were reported in a meta-analysis of resting-
state regional activity (Wang et al., 2016), which found that trauma-
exposed controls had higher regional resting-state activity in the right
posterior insula compared to people with PTSD. Zhang et al. (2016)
reported hypoconnectivity in PTSD at the right posterior insula with the
left inferior parietal lobe and the postcentral gyrus. A negative corre-
lation between hyperarousal symptoms and connectivity between the
posterior insula and the SN was also reported (Tursich et al., 2015),
suggesting greater connectivity of the posterior insula is associated with
lower PTSD symptom levels. Consistent with these findings, greater pre-
treatment insula gray matter density predicts better response to psy-
chotherapy (Colvonen et al., 2017; Nardo et al., 2010). These findings
suggest that greater functional connectivity and volume of the posterior
insula could contribute to the alleviation of PTSD symptom. As the
insula is thought to support internal representations of emotional states
(Craig, 2003), the heightened activity and connectivity at this region
might possibly help to accommodate internal emotional states of
trauma experience.

Veteran controls also showed reduced connectivity at the precuneus
(Fig. 4B, E, G). Patel et al. (2012) showed that the precuneus was hy-
peractive for PTSD, while most other DMN regions were hypoactive in
PTSD in their meta-analysis of functional brain activation studies for
PTSD. Cwik et al. (2016) also showed that for acute stress disorder
patients the right medial precuneus response to trauma-related pictures
was positively correlated with later development of PTSD symptoms. It
has been suggested that the precuneus subserves consciousness and self-
reflection (Vogt and Laureys, 2005). The dual representation theory
(Brewin et al., 2010) suggests precuneus activity triggers top-down
retrieval of S-reps with translation into a personally relevant (e.g.
egocentric) perspective. It has also been suggested that decreased pre-
cuneus function is associated with efforts to terminate self-reflection of
aversive sensations (Vogt and Laureys, 2005; Whalley et al., 2013). The
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decreased connectivity at the precuneus for VC, therefore, might reflect
effort to terminate self-reflection of aversive sensations, such as S-reps
of traumatic memory.

Veteran controls also had decreased resting-state functional con-
nectivity between the vmPFC and lingual gyrus (Fig. 4A) and between
the left middle frontal and the left postcentral regions (Fig. 4D). It is
possible that these reductions in connectivity are effects of traumati-
zation and therefore are comparable to people with PTSD. Several re-
mitted morbidities might also affect the alterations observed among
VCs, although we did not observe systematic differences between VCs
with and without remitted morbidity for these connectivity findings
(Supplementary Fig. S3). It is possible that the abnormalities observed
among VCs are due to war deployment, military training, or adaptive
changes to traumatic experiences, or that they reflect an innate resi-
lience factor. Future studies that employ longitudinal designs are
needed to distinguish the cause of altered resting-state functional con-
nectivity among war-deployed veterans without PTSD.

The current results did not show significant differences in resting-
state functional connectivity between the PTSD and VC groups. We note
that this result does not necessarily indicate that PTSD and VC groups
had the same connectivity patterns. Statistically, a non-significant re-
sult does not mean equivalence of the groups. This non-significant re-
sult could be due to substantial variability in the VC group, which in-
cluded individuals with remitted morbidity. However, even when we
excluded VC subjects with morbidity history from the analysis, we still
did not find significantly different connectivity between the PTSD and
VC groups. This suggests that either morbidity history was not a sole
reason for variability or that reduced statistical power due to smaller
sample sizes negated the benefit of reducing variability within a group.
Limited sensitivity of MDMR analysis, as discussed below, could also
affect the non-significant result. Accordingly, we cannot draw in-
ferences about the equivalence of the PTSD and VC groups based on this
non-significant result, particularly in light of different patterns of con-
nectivity alteration in the PTSD and VC groups compared to the NC
group in the current results and previous research that demonstrated
connectivity differences between people with PTSD and trauma-ex-
posed controls.

Variability in morbidity and trauma is typical among war-deployed
veterans. Even within PTSD patients, expression of the disorder is
highly heterogeneous, making it difficult to find a single diagnostic
marker of the disorder (Zoladz and Diamond, 2013). Importantly, the
current results do not suggest homogeneous abnormality either for the
PTSD or VC groups, but suggest average differences between groups.
While such between-group designs continue to contribute to our limited
understanding of the neuropathology of mental disorders, variability
within a diagnostic group needs to be included in analyses in accord
with the research domain criteria (RDoC) (Cuthbert, 2014) for further
understanding the disorder.

It is also warranted to address a limitation of MDMR analysis. The
current analysis did not observe a significant effect in the amygdala,
where many studies have indicated abnormality in PTSD (Shin et al.,
2006). Whole-brain analyses often do not observe abnormalities in
amygdala activity, whereas region of interest (ROI) analyses do observe
such abnormalities (Hayes et al., 2012). A meta-analysis (Hayes et al.,
2012) including only whole-brain analyses did not find amygdala ab-
normality for PTSD, while an analysis including ROI analyses found
amygdala hyperactivity for PTSD. One reason for the absence of
amygdala abnormalities in the current results, therefore, could be its
small effect size. Limited sensitivity of MDMR analysis, however, could
also be a reason for this result. MDMR analysis evaluates between-
subject distance of connectivity maps, and this distance measure could
be insensitive to a change in a small region because it summarizes the
differences in a large dimensional connectivity map into one measure.
Non-significant results in MDMR, therefore, should not be interpreted
as indication of a negative result. The distance measure of the MDMR
also introduces another limitation, that is, a distance measure reflects

only a size of difference and is not sensitive to how connectivity maps
differ. This means that a similar distance value could come from dif-
ferent patterns of connectivity alteration. As the current results de-
monstrated that not all the seed locations identified with MDMR
showed significant group differences in the post-hoc analysis, sig-
nificant group effects in the MDMR do not necessarily indicate common
differences in the group. Post-hoc analysis that investigates what dif-
ferences contribute to the MDMR measure is needed for correct inter-
pretation of MDMR results.

5. Conclusions

Connectome-wide investigation of altered resting-state functional
connectivity for war veterans with PTSD revealed hypoconnectivity
between the parahippocampus gyrus and the visual cortex as well as
across the lateral prefrontal and vmPFC with the SN regions. These
alterations were consistent with previous observations of abnormalities
in the emotion-regulation circuit and further support dissociated
memory representation in PTSD. The current results extended these
findings by indicating that such abnormality also appears to be present
in resting-state region-by-region functional connectivity. The analysis
also revealed increased connectivity with posterior insula and de-
creased connectivity with precuneus among veterans without PTSD,
with the later suggesting adaptive alteration to suppress traumatic
memory. While all the reasons for these observed alterations are not yet
clear, the comprehensive exploration via MDMR analysis enabled these
findings and offers potential targets for future research. Although we
should recognize limitations in sensitivity and interpretation, hypoth-
esis-free exploratory analysis with MDMR connectome-wide investiga-
tion yielded valuable information that complements existing hypoth-
esis-driven analyses.
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Highlights: 

Novel algorithm for automatic cardiac cycle detection directly from EEG-fMRI 

Algorithm largely improved cardioballistic artifact (BCG) cycle detection in EEG-fMRI 

High detection accuracy achieved without using external ECG recordings 

Make possible to automate BCG artifact removal from large EEG-fMRI datasets. 
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Abstract 

Background: 

In simultaneous EEG-fMRI, identification of the period of cardioballistic artifact (BCG) in EEG is required for 

the artifact removal. Recording the electrocardiogram (ECG) waveform during fMRI is difficult, often causing 

inaccurate period detection.  

New Method: 

Since the waveform of the BCG extracted by independent component analysis (ICA) is relatively invariable 

compared to the ECG waveform, we propose a multiple-scale peak-detection algorithm to determine the BCG 

cycle directly from the EEG data. The algorithm first extracts the high contrast BCG component from the EEG 

data by ICA. The BCG cycle is then estimated by band-pass filtering the component around the fundamental 

frequency identified from its energy spectral density, and the peak of BCG artifact occurrence is selected from 

each of the estimated cycle. 

Results: 

The algorithm is shown to achieve a high accuracy on a large EEG-fMRI dataset. It is also adaptive to various 

heart rates without the needs of adjusting the threshold parameters. The cycle detection remains accurate with 

the scan duration reduced to half a minute. 

Comparison with Existing Method: 

The algorithm is shown to give a higher detection accuracy than the commonly used cycle detection algorithm 

fmrib_qrsdetect implemented in EEGLAB. 

Conclusions: 

The achieved high cycle detection accuracy of our algorithm without using the ECG waveforms makes possible 

to create and automate pipelines for processing large EEG-fMRI datasets, and virtually eliminates the need for 

ECG recordings for BCG artifact removal 
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1 Introduction 

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provide noninvasive 

techniques to investigate brain states and activities. EEG records the electrical activity from cerebral cortex with 

a high temporal resolution. fMRI commonly measures the blood oxygen level of the brain with a high spatial 

resolution. Multimodal brain imaging with simultaneous recordings of EEG and fMRI combines the advantages 

of high temporal EEG resolution and high spatial fMRI resolution (Mulert and Lemieux, 2010), and has become 

an important tool to study brain spatial and temporal dynamics (Yuan et al., 2012; Zotev et al., 2016). 

Because of the strong static and varying gradient magnetic fields, the EEG data acquired simultaneously 

with fMRI suffers inevitably from two artifacts: the magnetic resonance (MR) gradient artifact and the 

cardioballistic (BCG) artifact. The MR artifact originates from the time varying gradient field during image 

acquisition. With MRI hardware improvements, the MR artifact is strictly periodic with the fMRI repetition 

time, and hence it can be efficiently removed from the EEG data using the average artifact subtraction (AAS) 

method (Allen et al., 2000). On the other hand, the BCG artifact is caused by the movements of the electrodes 

or subject due to pulsatile scalp, or by the movement of conductive blood related to the cardiac cycle (Yan et al., 

2010; Mullinger et al., 2013). While the waveform of the BCG artifact exhibits distinct pulse features related to 

the cardiac cycle, the features vary considerably in shape, amplitude and scale over time. 

Common algorithms for the BCG artifact removal include reference-based methods that form artifact 

templates based on reference signals. The reference signals, for example, can be acquired by electrocardiogram 

(ECG) (Allen et al., 1998), head motion estimation using adaptive filtering techniques (Bonmassar et al., 2002), 

and the insulating reference layer that is isolated from the EEG signals (Chowdhury et al., 2014). Recently a 

reference-free method was also introduced to model and remove the BCG artifact by harmonic basis and 

harmonic regression (Krishnaswamy et al., 2016). On the other hand, the BCG artifact can be removed by 

component analysis, such as optimal basis set (OBS) (Niazy et al., 2005), independent component analysis (ICA) 

(Bell and Sejnowski, 1995; Srivastava et al., 2005; Mantini et al., 2007), and wavelet transform (Kim et al., 
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2004; Wan et al., 2006). While using ICA alone may give suboptimal performance in the BCG artifact removal 

because of the non-stationary BCG nature (Debener et al., 2007), applications of AAS (Allen et al., 1998) or 

OBS followed by ICA can reduce the BCG artifact significantly (Debener et al., 2007; Vanderperren et al., 

2010). The AAS and OBS subtractions remain to be the most widely used methods for the BCG artifact 

removal in EEG simultaneously acquired with fMRI. 

The AAS and OBS algorithms require the detection of the BCG cycles in order to form the artifact 

subtraction templates. Thus the effectiveness of the BCG artifact correction using these algorithms depends on 

the accurate detection of the BCG cycles. QRS complex in the ECG waveform reflects the depolarization of the 

right and left ventricles and is the most prominent feature of the ECG waveform. The QRS complex, in 

particular the peak of the R wave in the complex, has been used for the determination of the cardiac cycles 

outside an MRI scanner. In simultaneous EEG-fMRI experiments, the ECG recording is commonly used to 

acquire the BCG cycle. Because of the strong fields in fMRI, the waveform of the ECG is prone to artifacts, 

sensitive to the probe design and position, and varies substantially across subjects. While the accuracy of the 

automatic QRS detection of ECG acquired outside an MRI scanner is very robust and reaches over 99% 

(Christov 2004), the period detection of ECG acquired in fMRI, which largely depends on its waveform, lacks 

robustness and was shown to have a much lower accuracy (Iannotti et al., 2015). Since an accurate BCG cycle 

detection is the basis of a proper removal of the BCG artifact from the EEG data, a robust detection algorithm is 

critical for the possibility of automatic pipeline for EEG preprocessing. 

As compared to that of the ECG recordings during fMRI, the waveforms of the BCG components in the 

EEG data are relatively invariable. The BCG components can be extracted from the EEG data by ICA 

(Srivastava et al., 2005; Mantini et al., 2007; McMenamin et al., 2010), and utilized for the BCG cycle 

determination. Recently, pulse artifact detection and correction based directly on the EEG data were proposed 

(Luo et al., 2015; Iannotti et al., 2015; Wong et al., 2016). These works extracted the pulse artifact from the 

EEG data by ICA (Luo et al., 2015; Wong et al., 2016) or by the signal difference between the electrodes on the 
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left and right hemispheres (Iannotti et al., 2015). As ICA is capable  of separating the artifacts, such as the BCG, 

muscle, blink and saccade artifacts, from each other (McMenamin et al., 2010), it provides a robust way to 

extract the BCG component with a relatively invariable waveform. This is particularly important for an accurate 

BCG cycle detection in the automatic processing of a large EEG dataset simultaneously acquired with fMRI. 

On the other hand, the commonly used algorithm for the automatic cycle detection of the ECG acquired in 

fMRI (Niazy et al., 2005; Debener et al., 2007; Luo et al., 2015; Iannotiti et al., 2015) was developed for the R-

peak detection of the ECG acquired outside an MRI scanner (Chrstiov 2004). Since the waveforms of the ECG 

vary substantially inside the scanner and the algorithm sets no limits to the detected cycle duration for 

individual subjects, multiple detections in one cycle or detections with significant missing cycles are observed 

(Fig. 1a). When large EEG datasets are considered, tremendous efforts are needed for the correction of the 

detected cycles, which prohibits any automation and makes the automatic processing virtually impossible. 

The BCG-related independent components (ICbcg) can be automatically identified by the mean power 

spectral density, topographical map, and signal contribution of the component (Wong et al., 2016). Based on the 

automatic identification of the ICbcg, we propose a novel automatic multiple-scale peak detection algorithm 

applied directly to the ICbcg for the BCG cycle determination. The algorithm involves peak detections in two 

band-pass filtering steps. In the first step, the BCG component is band-pass filtered for the estimation of the 

BCG cycle, with the band-pass frequencies chosen around the fundamental frequency automatically identified 

from the energy spectral density of the ICbcg. The second step selects the peak of the pulse artifact occurrence, 

which follows closely the R-peak of ECG, from each of the estimated cycle. The proposed algorithm limits the 

number of peaks to be detected in each BCG cycle, and significantly improves the detection accuracy by 

avoiding the double cycle detection or massively missing the peaks. The proposed algorithm also utilizes the 

relatively invariable waveform of the automatically identified BCG component from ICA to provide a direct 

measurement of the BCG cycle from the EEG data without using an external ECG recording.  
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2 Methods 

2.1 Data Acquisition 

The study was conducted at the Laureate Institute for Brain Research. The research protocol was 

approved by the Western Institutional Review Board (IRB). Forty-eight subjects (31 PTSD patients and 17 

healthy controls, mean age 32 ± 7 years, all male) participated in the study. Simultaneous EEG-fMRI was 

recorded on each subject over three scanning sessions. Each session included two resting scans. Out of the 48 

subjects, 8 subjects had only 5 resting scans, and 1 subject had 7 resting scans. In total, there were 281 resting 

scans. Each scan lasted for 8 min 46 s. 

The EEG-fMRI experiments were conducted on a 3 tesla MR750 MRI scanner (GE Healthcare, 

Waukesha, WI) with a standard 8-channel receive-only head coil. A single-shot gradient-echo EPI sequence 

with Sensitivity Encoding (SENSE) was employed for fMRI. The following EPI imaging parameters were used: 

TR/TE=2000/30 ms, FOV=240 mm, 34 axial slices per volume, slice thickness=2.9 mm, slice gap=0.5 mm, 

96×96 acquisition matrix, SENSE acceleration factor R=2, flip angle=90
o
, sampling bandwidth=250 kHz. Three 

EPI volumes (6 s) were excluded from the data analysis to allow the fMRI signal to reach steady state. The EPI 

images were reconstructed into a 128×128 matrix, so the resulting fMRI voxel size was 1.875×1.875×2.9 mm
3
. 

Physiological pulse oximetry and respiration waveforms were also acquired with fMRI. 

The EEG recordings were performed simultaneously with fMRI using a 32-channel MR-compatible 

EEG system (Brain Products GmbH). The EEG signals were measured using 31 electrodes relative to the 

common reference (FCz). One electrode was placed at the subject’s back for the recording of the ECG. The 

EEG signals were acquired with 16-bit 5 kS/s sampling providing 0.2 ms temporal and 0.1 µV measurement 

resolution, and hardware-filtered between 0.016 Hz (10 s time constant) and 250 Hz during the acquisition. 

 

2.2 EEG data preprocessing 
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The algorithm was implemented in MATLAB (MathWorks, Inc.). The MR gradient artifacts were 

corrected using OBS (fmrib_fastr.m implemented in EEGLAB) (Allen et al., 2000; Delorme and Makeig, 2004; 

Niazy et al., 2005). The EEG data were then band-pass filtered between 0.1 Hz and 70 Hz and downsampled to 

250 S/s. Band-rejection filters (1 Hz bandwidth) were applied to remove harmonics of the fMRI slice selection 

frequency (17 Hz), as well as the AC power line artifact at 60 Hz, and a vibration artifact at 26 Hz. The ICA 

was performed on the preprocessed EEG data using the Infomax algorithm (Bell and Sejnowski, 1995) 

implemented in EEGLAB to extract 31 independent components (ICs) from the 31 EEG channels. 

 

2.3 Automatic identification of the BCG components from the EEG data 

We have recently developed an algorithm to automatically identify the cardioballistic artifact ICs (ICbcg) 

related to head motions by analyzing the features of the power spectral density, topographic map and signal 

contributions of the ICbcg (Wong et al., 2016). We argued in Wong et al., 2016 that, by adequately choosing the 

features and adjusting the threshold parameters, the algorithm can be extended to identify also the non-motion 

related ICbcg, which is associated with a less restricted set of selection criteria, such as smaller signal 

contribution, larger spectral power at the harmonic frequencies of the BCG, and exhibition of either unilateral or 

opposite polarity topography. In this paper, the ICbcg was automatically identified based on the algorithm 

described in Wong et al., 2016, with the algorithm extended to selecting both motion and non-motion related 

ICbcg. This was achieved by modifying the conditions and threshold parameters in the analyses of the power 

spectral density, topographic map, and ICbcg signal contribution as described in Appendix A. 

 

2.4 Selection of the BCG component for cycle determination 

Because of the non-stationary nature of the cardioballistic artifact, several ICbcg components were 

usually identified in each scan. The peak contrast of the ICbcg defined in the following was used to select the 

ICbcg for the BCG cycle detection.  
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The ICbcg typically exhibits distinct peaks caused by cardiac pulsations. Analyzing the peak contrast of 

the ICbcg aims to select the ICbcg with the most distinct peak features for the cardiac cycle determination. To 

calculate the contrast, the ICbcg is first band-pass filtered between 1 Hz and the slice acquisition frequency, 

normalized using its standard deviation, and multiplied by a sign to ensure the pulsation peaks to point upward. 

The sign is taken as positive (or negative) if the average values of ICbcg that lie between [1, 4] is greater (or 

smaller) in magnitude than that lie between [4, 1]. Then the values of the ICbcg greater than 4 are capped at 4 

to minimize the motion artifact in the contrast calculation. The processed ICbcg as described above is now 

denoted by     . 

It is noted that the distinctness of the peak features in some ICbcg varies during the scan. Therefore the 

ICbcg contrast is analyzed over local time segments. Divide the scan time into NT time segments of 4 s duration. 

The peak contrast of the ICbcg is defined by the average peak to background ratio over all the time segments as 

  
 

  
 

   
         

     

   
    

  

   

 . (1) 

Here    
      is the average of   

    
 with   

    
= {x: x  the top 10

th
 percentile of the peak amplitude of      in 

the j
th

 time segment}, and    
      and    

    
  are the mean and standard deviation of   

    
with   

    
= {x: x  

the lower 90
th

 percentile of      in the j
th

 time segment}. The ICbcg with the highest peak contrast C is selected 

for the BCG cycle determination. Now the selected ICbcg is denoted by     . Fig. 2a shows examples of the 

contrast C and the corresponding     . The contrasts of the selected ICbcg from the 281 scans are plotted in Fig. 

2b. 

 

2.5 Cardiac cycle determination by multi-scale peak detection algorithm 

The multiple-scale peak detection algorithm was originally proposed for the peak-to-peak cardiac cycle 

determination in ECG (Wong et al., 2014). Here the algorithm was refined for the detection directly from the 

BCG data. The algorithm includes two steps of band-pass filtering. In Step 1 (Section 2.5.2), the selected ICbcg 
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(    ) is band-pass filtered (       ) for the estimation of the cardiac cycle. In order to find the band-pass 

frequencies adaptive to individual subject, the energy spectral density of the ICbcg (    ) and its smoothed form 

(     ) are first evaluated (Section 2.5.1). In Step 2 (Section 2.5.3),      is band-pass filtered and smoothed 

(       ) for the peak-to-peak cycle determination. The peaks of the artifact occurrence caused by the cardiac 

pulsations are selected from each of the estimated cycle found in Step 1. At the end of each step, the detected 

cycles are adjusted if they exceed the threshold values determined by the reference frequencies acquired from 

    . The detailed graphical representation of the algorithm of this paper is sketched in Fig. 3. 

 

2.5.1 Determination of the smoothed energy spectral density and band-pass frequencies 

For the BCG cycle estimation, the selected ICbcg is first rectified by setting the negative values to zero 

before the band-pass filtering. The purpose of the rectification process is to remove the noisy negative part of 

ICbcg so that the cycle estimation is based primarily on the peaks of the artifact occurrences. It should be noted 

that, although the rectification process introduces slope discontinuity to the function, the Fourier transform of 

the ICbcg, and hence the energy spectrum calculation, are only affected at high frequencies, but not in the 

frequency range of the cardioballistic artifact. 

To prevent the Fourier transform of a non-negative function from divergence at the zero frequency, the 

mean of the rectified ICbcg is removed in the energy spectrum calculation. Denote the resulting ICbcg by      . 

The energy spectral density of       is defined by  

              
 
, (2) 

where        is the Fourier transform of      . Consider the Hann window centered at t = 0 (Oppenheim et al., 

1999), 

       
         

    
  
 
   

  
           

  

 

           
  

 

  , (3) 
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where th = 16 s, the smoothed energy spectral density (     ) is obtained by convolving      with the Fourier 

transform of the Hann window (     ). Typical      and       are shown in Figs. 3a and 4. From the smoothed 

spectrum      , the fundamental frequency (  ) and the second harmonic frequency (  )    the subject’s hea t 

rate are identified. The band-pass filtering frequencies of Step 1 ([       ,        ]) are then chosen from the local 

minima around the identified fundamental frequency in       (Fig. 3a), with the conditions        > 0.5 Hz and 

         . Finally, three reference frequencies (       ,        ,       ) are selected from      for cycle 

adjustment. The evaluation details of the above frequencies (      ,       ,   ,   ,       ,       ,       ) are given 

in Appendix B. The threshold time durations derived from these frequencies to be used in Sections 2.5.2 and 

2.5.3 are defined by 

   
 

       
   for   j = 1, 2, 3, (4a) 

   
 

  
    (4b) 

   
 

       
    (4c) 

 

2.5.2 Estimation of the BCG cycle 

This step aims to estimate the cycle interval of the BCG component. In this step, the ICbcg is rectified by 

setting the negative values to zero. The intensity of the rectified function is band-pass filtered (       ) within 

the frequency range [       ,        ], and normalized using the standard deviation. Typical waveforms of 

        are plotted in Figs. 3b and 5. As shown in the figures,         can be used to estimate the cardiac cycle, 

in each of which the peak of the BCG artifact occurrence is selected. 

The time interval of the i
th

 estimated cycle of         is defined by  

          
     

     
     

  , (5) 
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where   
     

 is initially taken at the local minima of         (Fig. 3b, left column). The time interval is adjusted 

if they exceed the threshold time limits    and   . Denote all the peaks of         by {    }, and the local 

minima of         by {     , where             and                 . An extra cycle is detected in        if the 

following two conditions are satisfied: (i) the peak rise from the surrounding minima is small as compared to 

the previous cycles, with either a short time difference from the neighboring peak (Eq. (6a) or (6b)), or a short 

time difference between the surrounding minima (Eq. (6c)); (ii) the time difference between the surrounding 

neighbor peaks is insufficiently long to have two cycles (Eq. (6d)). The conditions are summarized in the 

following: 

                               ,  and                , (6a) 

                                 ,  and                , (6b) 

                                                            , and               , (6c) 

                 , (6d) 

where        is the average peak rise from the surrounding minima over the past 10 cycles, and   is chosen to be 

0.2. The first condition (Eq. (6a), (6b) or (6c)) indicates the exceptionally small peak rise and short cycle 

detected at     , which suggests the possibility of an extra cycle detection. The second condition further suggests 

that only one cardiac cycle should be found in between        and       . When an extra cycle is recognized in 

       , the extra cycle is not counted, but is absorbed into the neighboring cycles according to the conditions 

of Eqs. (6a)(6c) (Fig. 3b, right column). The new cycle boundary is taken to be the temporal location of the 

extra peak in the fusion process. 

 

2.5.3 Peak-to-peak cardiac cycle detection of the BCG component 

In this step, the peak-to-peak cardiac cycle is determined. The ICbcg is smoothed (       ) by band-pass 

filtering between 1 Hz and the MR slice acquisition frequency (    = 17 Hz), and normalized within each time 
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interval        using the standard deviation of         in       . Typical waveforms of         are plotted in Figs. 

3c and 5. As shown in the figures, several peaks are usually found in one interval. For one interval at a time, for 

instance the interval       , the peak of the BCG artifact occurrence (  
     

) that follows closely the R-peak of 

ECG is selected. Then the selection process will proceed to the next interval         . 

The peak-to-peak cardiac cycles of         are defined by    
     

 . For the selection of   
     

 in       , 

the interval        is first aligned with each of the past Nc intervals        (j = i1, … , iNc) by maximizing the 

correlation of         in        and       . After the alignment, the time offset      of the peak   
     

 from the 

lower bound of the previous interval        as measured from the lower bound of the current interval        is 

given by 

        
   

     
    

       
  

          
               

        (7) 

Here    
   

     
 and    

   
     

 are the lower bounds of the intervals        and       , and      denotes the 

average of the enclosed function over t.  Then the reference point for the selection of   
     

 is defined by the 

average of      

   
 

  
     

             

   

In this paper, Nc = 10 past cycles is used. For the peak selection in the first 10 cycles, Nc is set to the number of 

available past cycles. Denote all the peaks of         by       . The peak   
     

 is selected from        based on 

the following criteria: 

  
     

                  
         , (8a) 

  
     

                  
            , (8b) 

  
     

                  
         , (8c) 
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                      , or     
     

                      , (8d) 

where  

                                                     (8e) 

is the largest amplitude difference in the time range                      ,  t = 50 ms is the approximate width 

of the peak of the artifact occurrence, and a = 2. Again           and          denote the average and standard 

deviation of         over time t, and           and           denote the average and standard deviation of         

over peak time       . In some local time segments of the ICbcg with low contrast, no peak satisfies all the 

criteria in Eq. (8). In such a case,   
     

 is selected based on the restricted set of criteria in the following order 

until the peak is found: (i) Eqs. (8a)(8c);  (ii) Eqs. (8a), (8d); (iii) Eq. (8b) or (8c) that gives the closer   
     

 to 

  . It should be noted that Eq. (8a) is not applicable to the selection of the first peak (  
     

) in        as no past 

interval is defined for   
     

. In this case,   
     

 is selected based on the criteria in the following order: (i) Eqs. 

(8b)(8d); (ii) Eqs. (8b), (8d); (iii) Eqs. (8c), (8d); (iv) Eq. (8b). 

At the end of Step 2, the detected peaks (   
     

 ) are validated or adjusted one peak at a time by 

comparing the duration   
     

     
     

 with the time limits  1,  2, and  3 defined in Eq. (4). The durations  1 

and  3 are used to set the upper and lower limits for the detected cycles. A cycle duration that exceeds such 

limits indicates a missing cycle, extra cycle, or false cycle detection. For the cycle adjustment, the peak is re-

selected from the time interval  a j,  based on Eq. (8), and the correlation of         in Eq. (7) is calculated  

using the updated ranges  a j,  ( a j, ) instead of        (      ), with the lower bound    
 (   

) of  a j,  ( a j, ) 

updated correspondingly. While the updated ranges  a j,     
     

 
  

 
   

     
 

  

 
  are taken to be centered 

around the previously detected peaks, the range  a j,  depends on the types of the false detections, which are 

discussed in details in Appendix C and summarized in Table 1. 
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After the peaks    
     

  are validated or adjusted, the peak-to-peak cycles of the ICbcg ({  
    

}) are 

obtained by searching for the corresponding peaks of         in     , where 

  
    

       
        

     
           

     
      

       , (9a) 

    
 

          
   (9b) 

{     } denote all the peaks in     , and     = 17 Hz is the fMRI slice acquisition frequency used in 

experiments. The 0.5 Hz in Eq. (9b) is used to account for the width of the band-rejection filter after the MRI 

gradient artifact correction. 

 

2.5.4 Summary of steps 

In this section, the proposed multiple-scale peak detection algorithm detects the BCG artifact cycle 

directly from the BCG component (    ). 

In Sections 2.5.1, the algorithm evaluates the energy spectral density of the rectified ICbcg after having 

the mean removed, and smooths the spectrum by convolving it with the Fourier transform of the Hann window. 

From the energy spectral density (    ) and the corresponding smoothed form (     ), this step outputs the 

band-pass frequencies (      ,       ) for the ICbcg cycle estimation, the reference frequencies (      ,       , 

      ) for the cycle adjustments, and the fundamental frequency (  ) of the heart rate of the subject. 

In Section 2.5.2, the algorithm evaluates         by band-pass filtering the intensity of the rectified ICbcg 

within the frequency range   
     

       ], and identifies the peak-to-peak cycles of        . After the cycles 

are adjusted using the frequencies        and       , this step outputs the estimated cycle intervals of the ICbcg 

            
     

     
     

  , within each of these intervals the peak of the BCG artifact occurrence is selected. 

In Section 2.5.3, the algorithm smooths the ICbcg (       ) by band-pass filtering it between 1 Hz and 

the MR slice acquisition frequency (17 Hz). For one cycle interval    
     

     
     

  at a time, the algorithm selects 
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the peak of the BCG artifact occurrence (  
     

) in         based on the peak amplitude and the average of the 

past peak locations after the interval    
     

     
     

  is aligned with the past cycle intervals by maximizing the 

correlations between them. After the cycles are validated or adjusted using the frequencies       ,       ,        

and   , this step outputs the peak-to-peak cycles of the ICbcg {  
    

}, which are the corresponding peaks of 

        in     .  

 

2.6 Evaluation of cycle detection results 

The automatically detected peaks of the ICbcg were compared to the correct peak timings ({       
    

}), 

which were acquired in reference to both the ICbcg and ECG waveforms by semi-automatic search with 

subsequent manual inspection. The detected peak is deemed to be correctly identified (a true positive detection) 

when the difference between the timings of the detected peak and the correct peak is less than the given 

resolution (). A false positive detection refers to a falsely detected peak, and a false negative detection refers to 

an undetected peak. For the peak comparisons, two resolutions  = 10 ms and 58.8 ms were used. The 58.8 ms 

resolution was used in order to exclude the detection error originated from the amplitude fluctuations in the 

ICbcg induced by MRI gradients (17 Hz). 

To evaluate the peak detection accuracy, the sensitivity (  ), specificity (  ) and F1-score were used: 

where TP, FP and FN stand for the numbers of true positive, false positive and false negative peak detections. 

    
  

     
   (10a)     

  

              
   (14c) 

    
  

     
   (10b) 

    
  

              
   (10c) 
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When the peak detection shifts slightly from the true peak, the single detection error will be counted 

twice in Eq. (10) through FP and FN. To avoid double counting the error in the evaluation, the shifted false 

positive (SP) and shifted false negative (SN) detections were introduced (Dotsinsky and Stoyanov, 2004; 

Christov 2004). A shifted false positive is defined when the false detection falls within 200 ms earlier than the 

true peak, and a shifted false negative is defined when the false detection falls within 200 ms afterward. With 

SP and SN taken into account, the sensitivity, specificity and F1-score (Eq. (10)) become 

     
  

     ’    
   (11a) 

     
  

     ’    
   (11b) 

  
   

  

          ’       ’     
   (11c) 

where FP’ = FP  SP  SN and FN’ = FN  SP  SN are the numbers of false positive and false negative 

detections with SP and SN excluded. 

Finally, the detection accuracy of fmrib_qrsdetect.m on the ECG and ICbcg cycles were evaluated for 

comparisons. It is noted in some scans that, since the amplitudes of the R-peaks are comparable to the 

surrounding background amplitude, the R-peaks are not distinctly observed in the waveform of the ECG (Fig. 

1a: (S8)). For the scans with distinctly (or indistinctly) observable R-peaks, the correct peak timings of the ECG 

cycles ({       
     

}) were taken at the R-peak (or T-peak, c.f. Fig.1a: (S8)) locations. Also as shown in Fig. 1, 

fmrib_qrsdetect.m does not often pick the R-peak (or artifact occurrence peak) locations in the cycle detections 

of the ECG (or ICbcg). In order to compare the detected ECG (or ICbcg) cycles using fmrib_qrsdetect.m with the 

correct peak timings {       
     

} (or {       
    

}), the detected cycles were first aligned to {       
     

} (or {       
    

}) by 

maximizing the correlation between them. 

 

3 Results 
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The introduced multiple-scale peak detection algorithm was applied to 281 resting scans from 48 

subjects. The first 6 s of the scan and the time segments with unrecognizable ECG or ICbcg waveforms caused 

by subject motions were removed from the peak comparisons, giving a data length of 40.22 hours. 

Fig. 1a shows ECG data exemplars from eight subjects (S1-S8), and illustrates the failure of the ECG 

cycle detection (black crosses) using the cycle detection algorithm (fmrib_qrsdetect.m) implemented in 

EEGLAB (Christov 2004; Kim et al., 2004; Niazy et al., 2005; Delorme and Makeig 2004). Multiple detections 

in one cycle or detections with significant missing cycles are found in several scans. Also it is noted that the 

detected cycles do not always fall consistently to a fixed location relatively to the R-peak locations (Fig. 1a: 

(S2), (S7)). For example, in (S2) of Fig. 1a, the detections fall either at the peak location or afterward. In case 

when there is incorrect cycle detection, there is an ambiguity in the choice of the corrected cycle. Improved 

results are found when fmrib_qrsdetect.m is applied to the ICbcg (red crosses, Fig. 1b), but the detected cycles 

still do not fall consistently to a fixed location relative to the R-peak locations. Fig. 5 shows the results of the 

significantly improved BCG peak detection (the same data exemplar as in Fig. 1) by the proposed algorithm. 

The detected peaks are shown to follow closely the R peaks of the ECG, and our algorithm correctly detects the 

peaks despite the vast variations of the ECG waveforms. 

 

The cycle detection accuracy of the proposed algorithm is now evaluated by the specificity, sensitivity 

and F1-score (Eq. (10)). Figs. 6a and 6b plot the F1-score of the detected cycles against the ICbcg contrast (C) 

with the comparison resolutions  = 10 ms and 58.8 ms. As shown in the figures, the detection accuracy 

increases with C as expected. The results for the 48 subjects in 281 scans are listed in Table 2. For the 281 scans 

with  = 10 ms, the overall TP = 153019, FP = 648, FN = 911, Sp  = 99.58%, Se = 99.41% and F1 = 99.49%. 

With  = 58.5 ms, the overall TP = 153050, FP = 617, FN = 880, Sp = 99.60%, Se = 99.43% and F1 = 99.51%. 

With the shifted false positive and shifted false negative detections taken into account, the F1-score calculated 

by Eq. (11) with  = 10 ms is plotted against the ICbcg contrast (C) in Fig. 6c. The overall TP = 153019, FP’ = 
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297, SP = 174, FN’ = 560, SN =177,   
  = 99.69%,     = 99.52% and F1’ = 99.61%. Importantly, the results of 

the propose cycle detection algorithm are comparable to the ECG cycle detection outside the scanner (Christov, 

2004).  

For comparisons, the detection accuracy of fmrib_qrsdetect.m on the ECG and ICbcg cycles are evaluated. 

With the resolution  = 10 ms, the detection accuracies of fmrib_qrsdetect.m on the ECG and ICbcg cycles are 

respectively given by (TP = 97987, FP = 55534, FN = 55867, Sp, = 63.83%, Se = 63.69%, F1 = 63.76%) and (TP 

= 126657, FP = 27680, FN = 27273, Sp, = 82.07%, Se = 82.28%, F1 = 82.17%). The detection accuracies 

increase with the lower resolution  = 58.8 ms: (TP = 150989, FP = 2532, FN = 2865, Sp = 98.35%, Se = 

98.14%, F1 = 98.24%) for the ECG cycle detection and (TP = 149657, FP = 4680, FN = 4273, Sp = 96.97%, Se 

= 97.22%, F1 = 97.10%) for the ICbcg cycle detection. The resolution of the cycle detection is low because of the 

inconsistent positions of the detected cycles relative to the R-peak locations. It should be noted that 

fmrib_qrsdetect.m gains in accuracy with a lower resolution but it does not benefit from the cleaner BCG 

waveforms as manifested in the high resolution case. The detection accuracies using fmrib_qrsdetect.m with  = 

58.8 ms are summarized in Table 3. The total false positive and false negative detections of the ECG and ICbcg 

cycles are about 3.5 and 5.7 times of our proposed algorithm.  

 

The calculations were carried out in a workstation with dual Intel
® 

Xeon
®
 CPU E5-2620 at 2.00 GHz 

and 16 GB memory. The proposed algorithm takes about 4.2 s to detect 406 cardiac cycles in a 526 s duration, 

and the computational time (Tcal) of the algorithm increases linearly with the heart rate (L) (Fig. 7a). 

 

4 Discussions 

We have introduced a novel multi-scale peak detection method for automatic and accurate cardiac cycle 

determination directly from EEG data acquired concurrently with fMRI without the need for ECG recordings. 

High cardiac cycle detection accuracies are achieved based on the relatively invariable waveform of the ICbcg. 
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Fig. 2a shows the selected ICbcg according to Eq. (1) and the corresponding contrast (C). Distinct peaks can 

usually be observed in the entire ICbcg time course when    . The contrasts of the selected ICbcg from 281 

scans are plotted in Fig. 2b. In more than three quarters of scans, the contrasts are larger than 6.5. The high 

contrasts of the ICbcg warrant the relatively invariable ICbcg waveforms, and thus the high peak detection 

accuracies. 

The performance of the proposed algorithm is analyzed with different hearts rates and scan durations. 

Fig. 7b plots the distribution of the mean heart rate (L) of each scan. The measured heart rates of 281 scans 

range widely from 44 to 93 bpm. In Fig. 7c, the fundamental frequency (  ) identified from the smoothed 

spectrum is plotted against the mean heart rate. The figure shows that the identified    agrees well with the 

measured heart rate. By using the identified    to estimate the cardiac cycles, the proposed peak detection 

algorithm is accurate and adaptive to various heart rates without the needs of adjusting threshold parameters. 

When the scan duration is reduced, the total time period with head motions becomes comparable to the 

total scan duration. In the analysis of the algorithm performance with reduced scan duration, the motion time 

segments of the ICbcg are masked to zero in the energy spectrum calculation in order to separate the effect of the 

reduced scan duration from that of the head motions. Fig. 7d shows the detection accuracy of the scans with 

different reduced durations. The detection remains accurate provided that the scan duration is sufficiently long. 

When the scan duration is reduced to 16.252 seconds, F1 decreases significantly in one scan due to the 

inaccurate cycle estimation. Nevertheless, for all scan durations, the average F1 over the 281 scans is larger than 

98.6% (red line, Fig. 7d), and F1 > 95.8% in more than 95% of the scans with scan durations 24.376 seconds or 

longer (blue line, Fig. 7d). 

 

 

5 Conclusions 
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A multiple-scale peak detection algorithm is developed to robustly and accurately measure the cardiac 

cycle directly from the EEG data acquired simultaneously with fMRI, without the need of an external ECG 

recording. To extract the cardioballistic (BCG) component from the EEG data, independent component analysis 

is performed. The BCG component with the highest contrast is selected for the peak-to-peak cycle detection. 

The peak detection algorithm involves two band-pass filtering steps. The first step estimates the cardiac cycle 

by band-pass filtering the BCG component around the fundamental frequency identified from the energy 

spectral density. The second band-pass filtering step smooths the BCG component and selects the peak of BCG 

artifact occurrence from each of the estimated cycle. The detected cycles are adjusted if they exceed the 

threshold values determined by the reference frequencies acquired from the energy spectral density. 

The multiple-scale peak detection algorithm is shown to give a higher detection accuracy than the 

commonly used cycle detection algorithm implemented in EEGLAB. More importantly, the algorithm achieves 

a high accuracy on a large EEG-fMRI dataset, and is adaptive to various heart rates without the needs of 

adjusting the threshold parameters. The achieved high detection accuracy makes possible to create and automate 

pipelines for processing a large EEG-fMRI dataset. The proposed algorithm utilizes the relatively invariable 

waveform of the BCG component to detect the artifact occurrence directly from the EEG data. It simplifies 

EEG-fMRI experiments by virtually eliminating the need to place the ECG electrode  n subject’s chest    back 

for the BCG artifact correction,  

 

Acknowledgements 

This work was supported by US Department of Defense award W81XWH-12-1-0607. 

 

 

Appendix 

A. Details of the modified automatic BCG components identification from the EEG data in Section 2.3 
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To identify both the motion and non-motion related ICbcg, we have modified the algorithm described in 

our previous work (Wong et al., 2016). Following the original work, the modified algorithm identifies the ICbcg 

by analyzing the features of the power spectral density, topographic map and signal contributions. 

 

A.1 Power spectral density analysis 

In the power spectral density analysis, the power spectral density of the independent component (IC) is 

evaluated over 2.048 s time windows with 1.024 s overlap in decibel scale. The spectrum is divided into the 

frequency ranges of the cardioballistic artifact (CB: 27 Hz) and neuronal signal (NR: 812 Hz). For the 

spectrum of an ICbcg, large peaks are observed in the CB and NR frequency ranges. The peaks in the NR range 

of the ICbcg spectrum are originated from the harmonic frequencies of the cardioballistic artifact rather than the 

alpha rhythm of the brain. To distinguish the ICbcg from the neuronal signal component, comparable spectrum 

amplitudes in the CB and NR frequency ranges are required for an ICbcg. 

The peak rise in the CB frequency range (   ) is defined by the average amplitude difference from the 

surrounding minima. An NR peak is defined as the maximum power in the NR range. To obtain the full rise of 

the NR peak, the frequency range     ,    ] if     exist, or      ,    ] if     does not exist, is used, where     

is the NR peak frequency, and     is the frequency at the local minimum immediately below 8 Hz. The full rise 

of the NR peak (   ) is taken as the amplitude difference between the NR peak and the minimum point of the 

above frequency range. Denote the spectrum amplitudes in the CB and NR ranges by     and    . The selection 

criteria for both the motion and non-motion related ICbcg are given by (i)                 ; and either (ii) 

    
 

 
  , (iii)                , or (iv)                       and                

 

 
   . Here    

is the normalization scale of the spectrum calculated by the difference between the maximum and minimum 

amplitudes below 4 Hz, and      is the spectrum baseline taken at the minimum amplitude below the NR peak 

frequency. Condition (i) defines the large peak features required in the CB frequency range for an ICbcg. 

Condition (ii) defines the amplitude of a small NR peak rise. Conditions (iii) and (iv) define the comparable 
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spectrum amplitudes required in the CB and NR frequency ranges of an ICbcg spectrum if Condition (ii) is not 

satisfied. 

 

A.2 Topographic map analysis 

The spatial projection of an IC onto the EEG channel space forms a topographic map. The topographic 

map of an IC is computed by spatially interpolating the spatial projection vector of the IC using the MATLAB 

function griddata(). While a motion-related ICbcg exhibits opposite polarity in the topographic map, an ICbcg 

generally exhibits unilateral or opposite polarity topography (McMenamin et al., 2010; Zotev et al., 2012). In 

the case of unilateral polarity topography, the polarity region is located at the rear part of the head. 

In the topographic map analysis, the values and radius of the topographic map are normalized to unity. 

Two sets of polarity regions (primary and secondary polarity regions) are defined. The primary (secondary) 

polarity regions are the connected map areas with map values larger than 0.3 (0.1). Neutral regions are defined 

by the remaining non-polarity areas, and polarity arc regions are the overlapping polarity regions with the 

topographic map boundary (width = 0.2). The notations are defined as follow: A and N± (or A± and N±) are the 

total areas and numbers of the primary (or secondary) polarity regions, ± (or ±) are the numbers of the 

primary (or secondary) polarity arc regions, ± are the areas of the secondary polarity arc regions, and N0 is the 

number of neutral region with map magnitude smaller than 0.3. For the identification of both motion or non-

motion related ICbcg, topographies with either one unilateral polarity region or two opposite polarity regions that 

lie on the edge of the topographic map are selected. Suppose the total area of the positive primary polarity 

region is larger than the negative counterpart, or vice versa, i.e., A > A∓.  The selection criteria are given by the 

following: (i) N0  1; (ii) N± or N± = 1, ± or ± = 1; (iii) N∓ = ∓ = 1, or N∓ = ∓ = 0 with the non-zero 

primary region centered at the rear part of the head; (iv) A± > 0.25; ± > 0.25. Condition (i) requires no more 

than one neutral region in the topographic map of an ICbcg. Condition (ii) requires that, if A+ > A- (or A- > A+), 

only one positive (or negative) polarity region and polarity arc region is allowed in the ICbcg topographic map. 
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For A+ > A-. (or A- > A+), Condition (iii) refers to either the opposite polarity topography with one negative (or 

positive) primary polarity region and polarity arc region, or the unilateral polarity topography with none 

negative (or positive) primary polarity region. In the latter case, the center of the positive (or negative) primary 

polarity region is located at the rear part of the head. Condition (iv) sets the minimum areas of the secondary 

polarity region and polarity arc region for the topographic map of an ICbcg. 

 

A.3 Signal contribution analysis 

An ICbcg can be recognized by the distinct peaks in the time course caused by cardiac pulsations. 

Removing the contribution of the ICbcg from the EEG signal leads to a steady signal reduction at the pulsation 

peaks. While removing a motion-related ICbcg leads to significant signal reductions at multiple channels far 

away from the pivot point of the head, removing a non-motion related ICbcg may result in a smaller signal 

reduction at any EEG channel. In the analysis of the signal contribution, the average positive and negative 

magnitudes of the reduced signal when an IC is removed are compared with the original signal. 

The comparisons between the original and reduced signal are made separately in two sets of comparison 

time periods {T+k} and {T-k}, where k = 1, 2, … Den te the   iginal EEG signal an  the  e uce  signal at the j
th

 

channel by Vj(t) and Vj'(t). The comparison time period T+k (T-k) is the k
th

 time segment in which the IC is larger 

(smaller) than F0 + 0.1F0 (F0  0.1F0), and also Vj0  4Vj,min( )  Vj(t)   Vj0 + 4Vj,min( ), where F0 and F0 are 

the mean and standard deviation of the IC, Vj0 is the mean of Vj(t), and Vj,min( ) = min(std(Vj(t), t [0, ]), 

std(Vj(t), t [ ,2 ]), …) is the minimum standard deviation of Vj(t) over time windows of size   (  = 10 s). The 

purpose of setting the limits (Vj0  4Vj,min( )) to the EEG signal in the comparison time periods ({Tk}) is to 

avoid including the time moments with rapid head motions in {Tk}. The average magnitudes of Vj(t) and Vj'(t) 

over the comparison time periods {Tk} are given by j and j. For the purpose of BCG cycle detection, 

either a motion or non-motion related ICbcg is selected. The selection criteria are given by the following: for any 

channel j, (i) 0.5 (j+/j+ + j-/j-) < c2; and (ii) min(j+/j+, j-/j-) < c7, where (c2, c7) = (0.97, 0.95). 
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B. Determination of the fundamental, first harmonic, band-pass filtering, and reference frequencies from 

     and       

The lowest heart rate among subjects is assumed to be 0.5 Hz (30 heart beats per minute (bpm)). For the 

evaluations of       ,       ,   ,   ,        ,      , and       ,      and       are normalized to unity in the 

frequency range [0.5, 8] Hz. The fundamental frequency is searched from the range between 30 bpm and 120 

bpm. Among the peaks within the range, the frequency of the one with the largest       is selected as the 

fundamental frequency  .  

The band-pass frequencies of Step 1 (      ,       ) are initially taken as       and     , where        and 

     are the frequencies of the adjacent local minima of   . Let       >       > … >       
 be the Nl local 

minimum frequencies smaller than   ,      <      < … <      
 be the Nr local minimum frequencies larger than 

  , and      be the frequency of the j
th

 peak with      <      <        for j  2, and        <      <      for j 2, 

and       =   , then the value of        is updated from      to      if  

                 , (B.1a) 

                 , (B.1b) 

     ,     1        , (B.1c) 

and 

           , (B.2) 

where k = j  1 = 2, 3, …    he up ate           stops when any of the condition in Eqs. (B.1) and (B.2) 

becomes invalid. 

On the other hand, the frequency         is updated with an upper limit imposed by the second harmonic 

frequency (  ), which is found within the frequency range determined by       . Thus the two frequencies, 
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       and   , are evaluated and updated simultaneously. The width of the fundamental frequency peak is given 

by 

                  , (B.3) 

where        is initially taken as     . The second harmonic frequency is searched from the peaks that lie within 

the frequency range    
, where 

   
                                                    . (B.4) 

Until at least a peak is found in    
,    

 extends continually from both ends by 0.05     until the limits        

and        are reached. Then    is selected from the largest peak in    
, such that 

               
     . (B.5) 

Similar to the search of       , the search of        is updated from      to     , where k = j + 1 = 2, 3, … , 

together with the simultaneous update of    (Eqs. (B.3)(B.5)), if  

       ,  (B.6) 

and Eq. (B.1) are satisfied. The update stops when any of the condition in Eqs. (B.1) and (B.6) becomes invalid. 

Three reference frequencies (      ,       ,       ) are determined from      for the cycle adjustment at 

the end of each band-pass filtering step. The frequencies        and        are used to set the upper and lower 

limits for the detected cycles, and        is used together with        to distinguish an incorrect cycle detection 

from an extra cycle detection. For        and       , the frequencies are chosen to minimize the mean value of 

     over the frequency window    
, where 

               
            

 , (B.7a) 

   
              (B.7b) 

                  , (B.7c) 

and 
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 , (B.8a) 

   
              (B.8b) 

             
 

 
     .   (B.8c) 

In Eqs. (B.7) and (B.8), the center of the window (  ) sweeps through the range of Eqs. (B.7c) and (B.8c) with a 

frequency step 0.05 Hz, and a window width   = 0.05 Hz. Finally,        is chosen to be 

                      . (B.9) 

 

C. Details of the cycle adjustment at the end of the second band-pass filtering step 

A missing cycle in interval        is detected when 

  
     

     
     

   . (C.1) 

In this case, an extra peak is added in the interval  a j         
     

      
     

  (1st
 rows of Fig. 3c and Table 1). 

On the other hand, when the time separation between two peaks is smaller than   , i.e., 

  
     

     
     

   , (C.2) 

an incorrect peak is expected if the following equation holds: 

    
     

   
     

   , or      
     

     
     

   , (C.3a) 

    
     

 –      
     

              (C.3b) 

Eq. (C.3) suggests the higher possibility of detecting three cycles in      
     

     
     

  than two cycles. In this case, 

the interval  a j,  is determined by    and   , where      
     

     
     

 and        
     

     
     

. If        

(case (i)), the peak at   
     

 is removed, and replaced by the peak re-selected from              
     

        
     

  

(2
nd

 rows of Fig. 3c and Table 1).  If       (case (ii)), the peak at     
     

 is removed, and replaced by the peak 

re-selected from              
     

        
     

  (3rd
 rows of Fig. 3c and Table 1). Finally, if Eq. (C.2) holds but 
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Eq. (C.3) does not, an extra cycle is encountered (4
th

 rows of Fig. 3c and Table 1). In this case, the peaks in 

            
     

        
     

  are re-analyzed, and the peak,     
     

 or   
     

, is removed if it is not re-selected. 
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Table 1: Range of  a j,  in the correlation calculations of Eq. (7).  

Conditions  a j,  Index j of  a j,  

Eq. (C.1), 

(Fig. 3c, 1
st
 row) 

     
     

      
     

     
                           

                   
  

Eqs. (C.2), (C.3),       

(Fig. 3c, 2
nd

 row) 
     

     
        

     
     

                         
                   

  

Eqs. (C.2), (C.3),       

(Fig. 3c, 3
rd

 row) 
     

     
        

     
     

                           
                   

  

Eq. (C.2), not Eq. (C.3) 

(Fig. 3c, 4
th

 row) 
     

     
        

     
     

                           
                   

  

 

Here    
 

       
,      

     
     

     
,        

     
     

     
, and Nc = 10 past cycles were used for the correlation 

calculations. 
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Table 2: Cycle detection results of the 48 subjects in 281 scans by applying the proposed algorithm on ICbcg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

TP: number of true positive detections; FP: number of false positive detections; TN: number of false negative detections. 

              is the specificity.               is the sensitivity. 

The results were calculated with the comparison resolutions  = 10 ms and 58.8 ms.  

* (or **) indicates that the subject had participated 5 (or 7) resting scans. Other subjects had participated 6 resting scans.  

  

 Results of ICbcg cycle detection ( = 10 ms) Results of ICbcg cycle detection ( = 58.8 m) 

ID TP FP FN    (%)    (%) F1-score (%) TP FP FN    (%)    (%) F1-score (%) 

1 3095 9 18 99.71% 99.42% 99.57% 3095 9 18 99.71% 99.42% 99.57% 

2 2594 4 4 99.85% 99.85% 99.85% 2594 4 4 99.85% 99.85% 99.85% 

3 3124 17 17 99.46% 99.46% 99.46% 3125 16 16 99.49% 99.49% 99.49% 

4 3919 16 18 99.59% 99.54% 99.57% 3919 16 18 99.59% 99.54% 99.57% 

5 3308 16 27 99.52% 99.19% 99.35% 3309 15 26 99.55% 99.22% 99.38% 

6 2997 13 22 99.57% 99.27% 99.42% 2997 13 22 99.57% 99.27% 99.42% 

7 3313 2 5 99.94% 99.85% 99.89% 3313 2 5 99.94% 99.85% 99.89% 

8 2743 14 18 99.49% 99.35% 99.42% 2743 14 18 99.49% 99.35% 99.42% 

9 4196 18 23 99.57% 99.45% 99.51% 4196 18 23 99.57% 99.45% 99.51% 

10 3136 4 6 99.87% 99.81% 99.84% 3136 4 6 99.87% 99.81% 99.84% 

11 3091 15 20 99.52% 99.36% 99.44% 3091 15 20 99.52% 99.36% 99.44% 

12 2887 34 44 98.84% 98.50% 98.67% 2891 30 40 98.97% 98.64% 98.80% 

13 3557 4 6 99.89% 99.83% 99.86% 3557 4 6 99.89% 99.83% 99.86% 

14 3058 13 13 99.58% 99.58% 99.58% 3059 12 12 99.61% 99.61% 99.61% 

15 2705 1 3 99.96% 99.89% 99.93% 2705 1 3 99.96% 99.89% 99.93% 

16* 2953 14 21 99.53% 99.29% 99.41% 2953 14 21 99.53% 99.29% 99.41% 

17 3828 65 91 98.33% 97.68% 98.00% 3830 63 89 98.38% 97.73% 98.05% 

18* 3068 8 11 99.74% 99.64% 99.69% 3068 8 11 99.74% 99.64% 99.69% 

19 3043 2 6 99.93% 99.80% 99.87% 3043 2 6 99.93% 99.80% 99.87% 

20 3246 53 58 98.39% 98.24% 98.32% 3246 53 58 98.39% 98.24% 98.32% 

21 3913 9 12 99.77% 99.69% 99.73% 3914 8 11 99.80% 99.72% 99.76% 

22* 3246 26 39 99.21% 98.81% 99.01% 3250 22 35 99.33% 98.93% 99.13% 

23 2799 19 33 99.33% 98.83% 99.08% 2800 18 32 99.36% 98.87% 99.12% 

24 2640 6 18 99.77% 99.32% 99.55% 2641 5 17 99.81% 99.36% 99.59% 

25 3208 17 26 99.47% 99.20% 99.33% 3211 14 23 99.57% 99.29% 99.43% 

26 3640 7 10 99.81% 99.73% 99.77% 3640 7 10 99.81% 99.73% 99.77% 

27 3404 7 11 99.79% 99.68% 99.74% 3404 7 11 99.79% 99.68% 99.74% 

28* 2320 11 15 99.53% 99.36% 99.44% 2320 11 15 99.53% 99.36% 99.44% 

29 3015 1 1 99.97% 99.97% 99.97% 3015 1 1 99.97% 99.97% 99.97% 

30 2919 23 34 99.22% 98.85% 99.03% 2924 18 29 99.39% 99.02% 99.20% 

31* 3188 2 4 99.94% 99.87% 99.91% 3188 2 4 99.94% 99.87% 99.91% 

32 4051 25 30 99.39% 99.26% 99.33% 4052 24 29 99.41% 99.29% 99.35% 

33** 4830 2 3 99.96% 99.94% 99.95% 4830 2 3 99.96% 99.94% 99.95% 

34 3323 6 8 99.82% 99.76% 99.79% 3323 6 8 99.82% 99.76% 99.79% 

35 3423 5 7 99.85% 99.80% 99.83% 3423 5 7 99.85% 99.80% 99.83% 

36 3230 17 37 99.48% 98.87% 99.17% 3230 17 37 99.48% 98.87% 99.17% 

37 2905 10 11 99.66% 99.62% 99.64% 2905 10 11 99.66% 99.62% 99.64% 

38 3368 7 8 99.79% 99.76% 99.78% 3370 5 6 99.85% 99.82% 99.84% 

39 3875 22 27 99.44% 99.31% 99.37% 3876 21 26 99.46% 99.33% 99.40% 

40 3172 4 5 99.87% 99.84% 99.86% 3173 3 4 99.91% 99.87% 99.89% 

41 2852 15 11 99.48% 99.62% 99.55% 2852 15 11 99.48% 99.62% 99.55% 

42 2998 3 8 99.90% 99.73% 99.82% 2999 2 7 99.93% 99.77% 99.85% 

43 3248 6 14 99.82% 99.57% 99.69% 3248 6 14 99.82% 99.57% 99.69% 

44 2295 17 29 99.26% 98.75% 99.01% 2295 17 29 99.26% 98.75% 99.01% 

45* 2772 13 18 99.53% 99.35% 99.44% 2772 13 18 99.53% 99.35% 99.44% 

46* 2729 13 19 99.53% 99.31% 99.42% 2729 13 19 99.53% 99.31% 99.42% 

47 3032 12 13 99.61% 99.57% 99.59% 3032 12 13 99.61% 99.57% 99.59% 

48* 2763 21 29 99.25% 98.96% 99.10% 2764 20 28 99.28% 99.00% 99.14% 

Total 153019 648 911 99.58% 99.41% 99.49% 153050 617 880 99.60% 99.43% 99.51% 
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Table 3: Cycle detection results of the 48 subjects in 281 scans by applying fmrib_qrsdetect.m on ECG and 

ICbcg. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

TP: number of true positive detections; FP: number of false positive detections; TN: number of false negative detections. 

              is the specificity.               is the sensitivity. 

The results were calculated with the comparison resolution  = 58.8 ms.  

* (or **) indicates that the subject had participated 5 (or 7) resting scans. Other subjects had participated 6 resting scans.   

 Results of ECG cycle detection ( = 58.8 m) Results of ICbcg cycle detection ( = 58.8 m) 

ID TP FP FN    (%)    (%) F1-score (%) TP FP FN    (%)    (%) F1-score (%) 

1 3068 16 43 99.48% 98.62% 99.05% 3040 49 73 98.41% 97.65% 98.03% 

2 2571 5 28 99.81% 98.92% 99.36% 2573 341 25 88.30% 99.04% 93.36% 

3 3111 43 30 98.64% 99.04% 98.84% 3089 40 52 98.72% 98.34% 98.53% 

4 3905 19 32 99.52% 99.19% 99.35% 3787 122 150 96.88% 96.19% 96.53% 

5 3302 8 31 99.76% 99.07% 99.41% 3268 22 67 99.33% 97.99% 98.66% 

6 2985 17 30 99.43% 99.00% 99.22% 2965 41 54 98.64% 98.21% 98.42% 

7 3308 0 10 100.00% 99.70% 99.85% 3290 16 28 99.52% 99.16% 99.34% 

8 2724 18 34 99.34% 98.77% 99.05% 2677 51 84 98.13% 96.96% 97.54% 

9 4100 102 119 97.57% 97.18% 97.38% 4157 39 62 99.07% 98.53% 98.80% 

10 3123 17 17 99.46% 99.46% 99.46% 3123 2 19 99.94% 99.40% 99.66% 

11 3047 49 63 98.42% 97.97% 98.20% 3048 56 63 98.20% 97.97% 98.09% 

12 2847 67 80 97.70% 97.27% 97.48% 2852 73 79 97.50% 97.30% 97.40% 

13 3550 0 14 100.00% 99.61% 99.80% 3347 539 216 86.13% 93.94% 89.86% 

14 3053 6 18 99.80% 99.41% 99.61% 2873 625 198 82.13% 93.55% 87.47% 

15 2692 2 17 99.93% 99.37% 99.65% 2695 1 13 99.96% 99.52% 99.74% 

16* 2909 35 65 98.81% 97.81% 98.31% 2889 66 85 97.77% 97.14% 97.45% 

17 3796 486 120 88.65% 96.94% 92.61% 3713 175 206 95.50% 94.74% 95.12% 

18* 3051 6 29 99.80% 99.06% 99.43% 3050 21 29 99.32% 99.06% 99.19% 

19 3010 21 39 99.31% 98.72% 99.01% 3015 13 34 99.57% 98.88% 99.23% 

20 3259 25 40 99.24% 98.79% 99.01% 2967 303 337 90.73% 89.80% 90.26% 

21 3890 13 36 99.67% 99.08% 99.37% 3872 27 53 99.31% 98.65% 98.98% 

22* 2892 288 396 90.94% 87.96% 89.42% 3160 82 125 97.47% 96.19% 96.83% 

23 2704 100 129 96.43% 95.45% 95.94% 2734 80 98 97.16% 96.54% 96.85% 

24 2618 29 38 98.90% 98.57% 98.74% 2621 15 37 99.43% 98.61% 99.02% 

25 3202 16 25 99.50% 99.23% 99.36% 3138 61 96 98.09% 97.03% 97.56% 

26 3615 12 36 99.67% 99.01% 99.34% 3612 16 38 99.56% 98.96% 99.26% 

27 3329 27 80 99.20% 97.65% 98.42% 3349 40 66 98.82% 98.07% 98.44% 

28* 2299 345 34 86.95% 98.54% 92.38% 2286 38 49 98.36% 97.90% 98.13% 

29 3004 2 11 99.93% 99.64% 99.78% 2971 31 45 98.97% 98.51% 98.74% 

30 2883 15 67 99.48% 97.73% 98.60% 2885 50 68 98.30% 97.70% 98.00% 

31* 3157 5 38 99.84% 98.81% 99.32% 3161 24 31 99.25% 99.03% 99.14% 

32 4047 15 25 99.63% 99.39% 99.51% 3952 76 129 98.11% 96.84% 97.47% 

33** 4784 29 50 99.40% 98.97% 99.18% 4655 269 178 94.54% 96.32% 95.42% 

34 3300 2 25 99.94% 99.25% 99.59% 3276 40 55 98.79% 98.35% 98.57% 

35 3414 4 15 99.88% 99.56% 99.72% 3280 13 150 99.61% 95.63% 97.58% 

36 3173 55 96 98.30% 97.06% 97.68% 3129 103 138 96.81% 95.78% 96.29% 

37 2727 91 187 96.77% 93.58% 95.15% 2848 23 68 99.20% 97.67% 98.43% 

38 3351 12 24 99.64% 99.29% 99.47% 3334 18 42 99.46% 98.76% 99.11% 

39 3854 33 43 99.15% 98.90% 99.02% 3768 117 134 96.99% 96.57% 96.78% 

40 3144 17 31 99.46% 99.02% 99.24% 3144 16 33 99.49% 98.96% 99.23% 

41 2817 21 45 99.26% 98.43% 98.84% 2814 206 49 93.18% 98.29% 95.67% 

42 2973 16 28 99.46% 99.07% 99.27% 2971 9 35 99.70% 98.84% 99.26% 

43 3219 18 38 99.44% 98.83% 99.14% 3201 45 61 98.61% 98.13% 98.37% 

44 2279 27 40 98.83% 98.28% 98.55% 2149 161 175 93.03% 92.47% 92.75% 

45* 2761 12 26 99.57% 99.07% 99.32% 2744 32 46 98.85% 98.35% 98.60% 

46* 2725 5 23 99.82% 99.16% 99.49% 2588 141 160 94.83% 94.18% 94.50% 

47 2894 147 153 95.17% 94.98% 95.07% 2898 286 147 91.02% 95.17% 93.05% 

48* 2523 234 267 91.51% 90.43% 90.97% 2699 66 93 97.61% 96.67% 97.14% 

Total 150989 2532 2865 98.35% 98.14% 98.24% 149657 4680 4273 96.97% 97.22% 97.10% 
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Figure captions 

Figure 1: Automatically detected cardiac cycles by applying fmrib_qrsdetect.m on (a) ECG (black crosses) and 

(b) the selected BCG-related independent component (ICbcg) (red crosses). The same scans for eight 

representative subjects S1S8 were used in (a) and (b). Red line: ECG; blue line: ICbcg; blue dots: correct peak 

timing for the ECG recording ({       
     

}); green dots: correct peak timing of the BCG artifact occurrence 

({       
    

}). In the plots, ICbcg and ECG are normalized using their respective standard deviations. Note that the 

ECG waveforms vary substantially across subjects. 

 

Figure 2: (a) Selected ICbcg (F(t)) (black line) and its contrast (C) for subjects S6, S9S11; (b) distribution of 

the selected ICbcg contrast in 281 scans. In (a), the red line is the ECG. F(t) and ECG are normalized using their 

respective standard deviations. 

 

Figure 3: Schematic of the proposed automatic BCG cycle detection algorithm. The algorithm includes (a) the 

evaluations of the frequencies       ,       ,   ,   ,       ,       ,        from       and       (Section 2.5.1, 

Appendix B); (b) the estimation of the cardiac cycle {      } (Section 2.5.2); and (c) the peak-to-peak cycle 

determination    
     

  (Section 2.5.3). In (a), black line:      ; green line:     . In (b), blue line:     ; cyan 

line:        ; red line: ECG.         is calculated by band-pass filtering      in [      ,       ]. The black 

crosses indicate the peaks of         in       . The black dashed lines mark the cycle intervals {      }. The left 

and right columns of (b) show the detected {      } before and after the cycle adjustment (Eq. (6)) using    and 

       (Eq. (4)). The black arrows indicate the merging of two intervals. The alternate shaded and white regions 

in the right column of (b) and left column of (c) mark the cycle intervals {      } in each of which the peak of 

artifact occurrence is selected. In (c), black line:        ; cyan line:        ; red line: ECG. The black dashed 

lines mark the detected peak-to-peak cycles of         ({  
     

}). The left and right columns of (c) show the 
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cycles {  
     

} before and after the cycle adjustment according to Eqs. (C.1)(C.3) and Table 1 using   ,        

       ,        (Eq. (4)). The black arrows indicate the range        , in which a peak is added or re-selected. The 

red dashed lines mark the lower bound    
 of        . In (b) and (c),     ,         and ECG are normalized by 

their standard deviations, and         is piecewise normalized within each interval {      } using the standard 

deviation as described in Section 2.5.3. 

 

Figure 4: Smoothed energy spectral density of the selected ICbcg (     ) for the same eight subjects S1S8 

shown in Figs. 1 and 5. The original energy spectral density (    ) is plotted in green line.        and      are 

normalized to unity within [0.5 Hz, 8 Hz]. The pair of magenta circles indicates the frequency range of the first 

band-pass filtering step (Section 2.5.1). The blue triangles are the reference frequencies used for the adjustments 

of the detected cycles at the end of each band-pass filtering step (Sections 2.5.2 and 2.5.3). The red and black 

crosses respectively mark the fundamental and second harmonic frequencies. 

 

Figure 5: Detected peak-to-peak cycles using the multiple-scale peak detection algorithm for the same 

representative subjects S1S8 shown in Figs. 1 and 4. Black line:        ; blue line:     ; cyan line:        ; 

and red line: ECG. The black and blue circles are respectively the detected peaks of         and     , i.e., 

   
     

  and    
    

 . The blue dots are the correct peak timing of the BCG artifact ({       
    

}).     ,         and 

ECG are normalized by their standard deviations, and         is piecewise normalized within each interval 

{      } using the standard deviation as described in Section 2.5.3. Note that the black and blue lines almost 

overlap with each other. The delay of the ICbcg peaks ({       
    

}) from the ECG R-peaks ({       
     

}) for subjects 

S1S7 can be estimated by maximizing the correlation between them, and are given by 208, 108, 196, 212, 200, 

92 and 152 ms. For subject S8, the delay of the ICbcg peaks from the ECG T-peaks is 8 ms. 
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Figure 6: Plots of (a)(b) F1-score of the detected cardiac cycles (Eq. (10)) and (c) F1-score of the detected 

cardiac cycles with the shifted false positive and shifted false negative detections taken into account (F1’) (Eq. 

(11)) against the ICbcg contrast (C) for 281 scans. In (a) and (c), the comparison resolution is  = 10 ms. In (b),  

= 58.8 ms. The black lines are the power fit trends. 

 

Figure 7: Performance of the proposed algorithm for different hearts rates and scan durations. (a) Plot of 

calculation time (Tcal) against mean heart rate (L) for all scans. (b) Distribution of the mean heart rate (L) of the 

scans. (c) Plot of the fundamental frequency (  ) against the mean heart rate (L) for all scans. (d) Semi-log plot 

of F1 against different scan durations for 281 scans. In (a), the red line is the linear fit of Tcal versus L. In (c), the 

grey area shows the standard deviation of the heart rate of each scan. The red line plots    = L. In (d), the 

reduced scan duration is taken from the beginning portions of the scans after the first 6 s segment is removed. 

The scan durations considered in the plot are 16.252, 24.376, 32.5, 48.752, 65, 97.5, 130, 195, 260, 325, 390, 

455, 520 s. The results are calculated by Eq. (10) with the comparison resolution  = 10 ms. The red and blue 

lines represent the mean and top 95
th

 percentile of F1 for a given scan duration. The dotted area is plotted in an 

enlarged scale in the inset. 
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Abstract 

Posttraumatic stress disorder (PTSD) is a trauma- and stressor-related disorder that may emerge 

following a traumatic event. Neuroimaging studies have shown evidence of functional abnormality in 

many brain regions and systems affected by PTSD. Exaggerated threat detection associated with 

abnormalities in the salience network, as well as abnormalities in executive functions involved in 

emotions regulations, self-referencing and context evaluation processing are broadly reported in PTSD. 

Here we aimed to investigate the behavior and dynamic properties of fMRI resting state networks in 

combat-related PTSD, using a novel, multimodal imaging approach. Simultaneous 

electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) was employed to 

measure neurobiological brain activity among 36 veterans with combat-related PTSD and 20 combat-

exposed veterans without PTSD. Based on the recently established method of measuring temporal-

independent EEG microstates, we developed a novel strategy to integrate EEG and fMRI by quantifying 

the fast temporal dynamics associated with the resting state networks. We found distinctive occurrence 

rates of microstates associated with the dorsal default mode network and salience networks in the PTSD 

group as compared with control. Furthermore, the occurrence rate of the microstate for the dorsal default 

mode network was positively correlated with PTSD severity, whereas the occurrence rate of the 

microstate for the anterior salience network was negatively correlated with hedonic tone reported by 

participants with PTSD. Our findings reveal a novel aspect of abnormal network dynamics in combat-

related PTSD and contribute to a better understanding of the pathophysiology of the disorder. 

Simultaneous EEG and fMRI will be a valuable tool in continuing to study the neurobiology underlying 

PTSD. 

Keywords: 
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INTRODUCTION 

Posttraumatic stress disorder (PTSD) is a psychiatric disorder that may emerge following a traumatic 

event (American Psychiatric Association [APA], 2013). It is a chronic and debilitating psychiatric 

disorder with characteristic symptoms of hypervigilance and hyperarousal, emotional numbing, 

dissociation, negative alterations in cognitions, and re-experiencing phenomena (APA, 2013; Kessler, 

2000). PTSD is common following combat experiences at military deployments, particularly those in 

Iraq and Afghanistan (Hoge et al., 2004). The neuropathophysiology of PTSD have become investigated 

in neuroimaging studies. Functional magnetic resonance imaging (fMRI) studies have reported 

functional abnormalities in cortical and subcortical circuits involving the amygdala, insula, ventromedial 

prefrontal cortex (vmPFC), anterior cingulate cortex (ACC) and hippocampus (Pitman et al., 2012; Shin 

and Liberzon, 2010). Activation patterns of these discrete anatomical entities in response to emotion 

elicitations, such as the presentation of traumatic event cues, have been the focus of examination. 

However, it is not clear whether the abnormal patterns observed in the neural circuits are specific to 

reactivity to experimental emotion elicitations or if they reflect more general functional abnormalities. 

Therefore, identifying dysregulated patterns of resting state functional connectivity (Fox and Raichle, 

2007; Greicius et al., 2009), which is examined in the absence of external tasks, may provide valuable 

insights into the pathophysiology of PTSD. 

Resting state functional connectivity (RSFC) refers to correlations in hemodynamic activity levels 

among different brain regions, suggesting synchronization of neural activation of those regions during 

rest (Greicius et al., 2009). The organization of the connectivity is structured as a set of resting state 

networks (RSNs; Biswal et al., 1995; Fox and Raichle 2007), and regions within a RSN shows 

spontaneous and coherent activities. The alterations in two specific networks may underlie PTSD: the 

default mode network (DMN; Bluhm et al., 2009; Daniels et al., 2011; Shin et al., 2009; Lanius et al., 
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2010; Lui et al. 2009, Shin et al., 2009), and the salience network (SN; Daniels et al., 2010; Sripada et 

al., 2012b). To date, many studies examining integrity of network connectivity in PTSD have 

investigated the effect of combat exposure. However, the findings have been elusive. Conflicting results 

of these studies have largely depended on the selection of a control group. Alterations in resting state 

networks, or connectivity, have been reported in PTSD compared to non-trauma-exposed controls 

(Daniels et al., 2010), or a combination of trauma-exposed and non-trauma-exposed controls (Kennis et 

al., 2016; Sripada et al. 2012a). Sampling both combat-exposed and civilian controls obfuscates 

understanding if PTSD-related differences are specific to PTSD or due to combat exposure or even 

being in the military more generally. In this regard, a study by DiGangi et al. (2016) examined details in 

three groups, i.e. veterans with combat-related PTSD, combat-exposed controls without PTSD and 

never-traumatized healthy controls, and compared their resting state functional connectivity. Differences 

associated with PTSD were only observed in comparison with the civilian control, but not in comparison 

with combat-exposed veterans. Thus, it remains unclear whether abnormality of resting state networks is 

best attributed to military status, combat exposure, or PTSD.  

The goal of the current study was to test whether RSFC differs between combat-exposed veterans 

with, as compared to without, PTSD. This method allows for ruling out the effects of being in the 

military generally, and combat exposure specifically. We employed a novel multimodal imaging 

approach using simultaneous electroencephalography (EEG) and fMRI to study activity in the resting 

state networks. The measurement of neural activity via fMRI, as done in prior work, is relatively limited 

in terms of understanding temporal dynamics of neural activity because the BOLD signal relies on a 

relatively slow hemodynamic response. In contrast, EEG is much more sensitive to the temporal 

dynamics of neural activity because it captures fast neuronal events that evolve on the scale of 

milliseconds. Neuroimaging with integrated and combined EEG-fMRI has been suggested to offer new 
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insights in the study of functional connectivity because it offers both high spatial resolution of fMRI and 

the high temporal resolution of EEG (He et al., 2008). In order to examine resting state network activity, 

a new method by Yuan et al. (2012) has demonstrated that temporal independent EEG microstates 

(EEG-ms) can be obtained from resting state EEG acquired concurrently with fMRI. It was further 

showed that EEG-ms form direct electrophysiological signatures to the canonical resting state networks 

measured by resting state fMRI in both spatial and temporal domains (Yuan et al. 2012 and 2016). This 

study examined EEG-ms associated with the resting state networks of relevance to PTSD — default 

mode network and the salience network. We proposed a new strategy to quantify the fast temporal 

dynamics of DMN, and SN functional connectivity in terms of EEG-ms occurrence rate. We 

hypothesized to observe abnormalities in the electrophysiological signatures of the two resting state 

networks, default-mode network and salience network, between the PTSD group and the combat control 

group. 

 

METHODS 

Participants 

The study was approved by the Western Institutional Review Board (IRB). All study procedures were 

carried out in accordance with the principles expressed in the Declaration of Helsinki. Thirty-six male, 

unmedicated veterans aged 18 to 55 years with combat-related PTSD according to the Diagnostic and 

Statistical Manual of Mental Disorders– Fourth Edition Text Revision (DSM-IV-TR, APA, 2000) 

participated. Twenty male, combat-exposed, medically and psychiatrically healthy male veterans who 

did not meet diagnostic criteria of PTSD or any other Axis I psychiatric disorder were also recruited as 

combat-exposed controls (CEC). Participants, recruited from the community, underwent medical and 

psychiatric screening evaluations at the Laureate Institute for Brain Research. PTSD diagnoses were 
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determined with the Clinician Administered PTSD Scale (CAPS), which is a gold standard for 

diagnosing PTSD (Blake et al., 1990, 1995; Weathers et al., 2001), delivered by interviewers trained in 

the administration of the interviewer. Participants were also administered the Structural Clinical 

Interview for DSM-IV Disorders, the PTSD Checklist military version (PCL-M; Weathers et al., 1991), 

Hamilton Anxiety Rating Scale (HARS; Hamilton, 1959), the Snaith-Hamilton Pleasure Scale (SHAPS; 

Snaith et al., 1995), the Montgomery–Åsberg Depression Rating Scale (MADRS; Montgomery & 

Asberg, 1979) and the Hamilton Depression Rating Scale (HDRS; Hamilton, 1960).  

 Exclusion criteria included general MRI exclusions, psychosis, current or past history of 

schizophrenia, schizoaffective disorder, bipolar disorder, or dementia, moderate to severe traumatic 

brain injury, serious suicidal ideation, major medical or neurological disorders, and exposure to any 

medication likely to influence cerebral function or blood flow within three weeks (eight weeks for 

fluoxetine), as well as meeting DSM-IV criteria for substance abuse or substance dependence (other 

than nicotine) within 3 months prior to screening. After receiving a complete explanation of the study 

procedures, all participants provided written informed consent as approved by the Western Institutional 

Review Board. Participants received financial compensation for their participation.  

 

Data Acquisition 

Simultaneous EEG and fMRI data were acquired in all study participants. MRI scans were completed 

at the Laureate Institute for Brain Research on General Electric Discovery MR750 whole-body 3 Tesla 

MRI scanners (GE Healthcare, USA) with standard 8-channel receive-only head coils. Resting-state 

fMRI data were acquired using a single-shot gradient-recalled EPI sequence with Sensitivity Encoding 

(SENSE). The resting state session lasts for a total of 8 minutes and 46 seconds when participants were 

instructed to keep their eyes open and fixed on a white cross in front of a gray background. The 
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following EPI imaging parameters were used: FOV/slice = 240/2.9 mm, axial slices per volume = 34, 

acquisition matrix = 96×96, repetition time/echo time (TR/TE) = 2000/30 ms, SENSE acceleration 

factor R = 2 in the phase encoding (anterior-posterior) direction, flip angle = 90°, sampling bandwidth = 

250 kHz. The EPI images were reconstructed into a 128×128 matrix, in which the resulting fMRI voxel 

volume was 1.875×1.875×2.9mm
3
. Additional structural MRI were collected using a T1-weighted 

magnetization-prepared rapid gradient-echo (MPRAGE) sequence with SENSE. The following 

parameters were set for structural MRI: FOV = 240 mm, axial slices per slab = 128, slice thickness = 1.2 

mm, image matrix = 256×256, TR/TE = 5/1.9 ms, acceleration factor R = 2, flip angle = 10°, 

delay/inversion time TD/TI = 1400/725 ms, sampling band-width = 31.2 kHz.  

Simultaneous EEG signals were recorded using MRI-compatible BrainAmp MR Plus amplifiers 

(Brain Products GmbH, Munich, Germany). Thirty-one channels of EEG at the standard 10-20 positions 

were acquired, with a reference to the FCz position. The electrodes covered the whole brain with an 

inter-electrode distance of ~ 5 cm. One additional electrode of electrocardiogram was also acquired for 

the purpose of correcting the pulse artifacts (Allen et al., 1998). All electrodes were well prepared and 

maintained with impedance below 10 kΩ throughout the recording. SyncBox device (Brain Products 

GmbH, Munich, Germany) was set up for synchronizing the internal sampling clock of the EEG 

amplifier with the MRI scanner 10MHz master clock signal for the purpose of removing the gradient 

artifacts ( Allen et al., 2000; Mandelkow et al., 2006). The signals were recorded at a sampling 

frequency of 5000 Hz with an analog filter (from 0.016 to 250 Hz) and a resolution of 0.1µV.  

Additional auxiliary data included respiration and cardiac pulses recorded by a pneumatic respiration 

belt and a photoplethysmograph, respectively, for correcting the physiological noise in resting state 

fMRI data. The recording of the cardiac pulse and respiratory data was synchronized with the fMRI data 

acquisition. Both waveforms were sampled at a frequency of 50 Hz. 
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EEG Processing  

Preprocessing of the EEG data corrected the artifacts due to simultaneous recording with MRI 

scanning, i.e. the gradient artifacts and the pulse artifacts, using the average subtraction method (Allen et 

al., 1998; Allen et al., 2000) implemented in BrainVision Analyzer software (Brain Products GmbH, 

Munich, Germany). Residual pulse artifacts were removed by using the independent component analysis 

(ICA) implemented in the EEGLAB toolbox (http://sccn.ucsd.edu/eeglab/). In some participants, an 

EEG channel with extreme noises was disregarded and then interpolated by an average of neighbor 

channels. The de-noised data were subsequently band-pass filtered from 1 Hz to 70 Hz, downsampled to 

250 Hz, and re-referenced to the common average reference.  

After preprocessing, temporal independent EEG microstates (EEG-ms) were derived using the 

method described in Yuan et al. (2012). Briefly, the EEG topographies were extracted at the local peaks 

of global field power, pooled across all sessions and further segregated into temporal independent 

patterns in a data driven manner by ICA, namely the temporal independent EEG microstates. The 

number of independent components (ICs) in microstates was chosen to be 30, i.e. the maximum number 

of channels commonly available among all participants. Components related to nuisance processes (i.e., 

eye movement, residual pulse artifact and muscle artifact) were further excluded. The temporal 

independent EEG-ms were separately analyzed for the PTSD and CEC groups. Then the microstates of 

the PTSD group were matched to each of those in the CEC group by selecting the one with the highest 

spatial correlation coefficient. A back-projection was performed to obtain time courses associated with 

each EEG-ms, resulting in continuous time series as the original EEG data. Furthermore, the time series 

were normalized using a winner-take-all approach, i.e. a microstate was assigned to a time point based 

on which microstate has the maximal absolute intensity value. The resulted time series of a EEG-ms are 

http://sccn.ucsd.edu/eeglab/
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composed of series of zeros and ones, with the value of ones at time points when the absolute intensity 

value of the particular microstate exceeded those of all other microstates. The time course describes the 

temporal dynamics of the EEG-ms dominating the momentary EEG topographies over other microstates. 

The occurrence rate of a EEG-ms was calculated as the summation of the time series of the EEG-ms 

divided by the duration of the period of time, indicating how frequent the EEG-ms dominates the 

momentary EEG topographies over other microstates. 

The occurrence rate of EEG-ms was calculated for each subject, compared across groups, and 

examined in relation to clinical ratings. Group-level comparison between PTSD and CEC was 

performed on the occurrence rate of the EEG-ms, using a two-sample, unpaired t-test assuming unequal 

variance. 

 

fMRI Processing 

The fMRI data preprocessing was performed using the Analysis of Functional NeuroImages software 

(AFNI, http://afni.nimh.nih.gov/) (Cox 1996). Preprocessing of the resting state fMRI data steps include 

removal of the first five volumes of each run, respiration- and cardiac-induced noise reduction using 

RETROICOR (Glover et al., 2000), slice timing and rigid-body motion correction, spatial smoothing 

with a Gaussian kernel (FWHM = 6 mm), and temporal filtering with a bandpass filter (0.01 ∼ 0.1 Hz). 

Further processing removed the low-frequency changes in respiration volume and motion as nuisances 

in the regression (Birn et al., 2006). Spatial co-registration and normalization was conducted by 

converting fMRI data in the original individual space to a common anatomical space defined in the 

Talairach and Tournoux template brain (Talairach and Tournoux 1988) with aid of the Advanced 

Normalization Tools (http://www.picsl.upenn.edu/ANTS/). 

http://afni.nimh.nih.gov/
http://www.picsl.upenn.edu/ANTS/
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After preprocessing, resting state networks of the fMRI were obtained using a spatial ICA 

implemented in the MELODIC (multivariate exploratory linear optimized decomposition into 

independent components) tool in the FSL software (Beckmann et al., 2005). The order of independent 

components (ICs) was determined to be 30, as consistent with EEG and also consistent with other fMRI 

studies of RSN (Damoiseaux et al., 2006; Smith et al., 2010). The intensity values in each map of each 

participant were constructed via dual regression (Filippini et al., 2009; Veer et al., 2010), resulting in 

subject-specific spatial maps of z-scores. Voxel-vise comparison between the PTSD and CEC groups 

was performed using an unpaired, two-sample t test. The significance criterion for thresholding was set 

at pcorrected<0.05 determined using the AFNI program 3dClustSim. In addition, an averaged map across 

all individuals was calculated and thresholded at the value of 2 (Damoiseaux et al., 2006).  

 

Multi-Modal Analysis 

In order to identify the RSNs associated the EEG-ms, we compared the time courses of the EEG-ms 

associated with the dynamics of whole-brain fMRI time series. Firstly, to accommodate the dramatically 

different temporal scales of multimodal EEG and fMRI data, the time courses of the EEG-ms were 

convolved with a double-gamma hemodynamic response function (HRF) (Friston et al., 1998) and then 

down-sampled to TR, resulting in EEG-ms-informed regressors. The microstate that is related to a 

resting state network is determined by integrating the EEG-ms-informed regressors in a general linear 

model (GLM) analysis using a mixed-effect model. EEG-ms-informed statistical maps were created by 

showing voxels where the time courses of BOLD signals significantly co-varied with the time courses of 

EEG-ms-informed regressors. The significance criterion for thresholding was set at pcorrected<0.05 

determined using the AFNI program 3dClustSim.  
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The EEG-ms-informed maps were compared with the resting state networks calculated from fMRI. A 

Pearson’s correlation coefficient was calculated between a EEG-ms-informed map and all maps of fMRI 

RSNs. A particular EEG microstate of interest is associated with a RSN, by selecting and designating 

the RSN that has the highest spatial correlation with the EEG-ms-informed map. Then the selected fMRI 

RSNs from our data were compared with 14 template RSNs reported in Shirer et al. (2012). Since the 

templates were in binary numbers, the selected fMRI RSN maps were thresholded following the 

procedure described in Shirer et al. (2012). Dice coefficient for a pair of maps in binary values was 

calculated. An fMRI RSN was labeled with the template RSN that has the highest dice coefficient. 

Correspondingly, an EEG-informed network matched with the fMRI RSN was also designated with the 

same label. 

 

RESULTS 

Thirty-six PTSD veterans and twenty CEC veterans were included in the current analysis. Table 1 

lists the demographic and clinical characteristics of the participants of the current study.  

 

[Insert Table 1 here] 

 

A series of ten temporal independent microstates were identified in the groups of PTSD and CEC 

veterans (Fig. 1). Nine out of the 10 microstates highly resemble those found in our previous study 

(MS1, MS2, MS4, MS5, MS6, MS7, MS8, MS9 and MS10 in Yuan et al. 2012). Remarkably, the 

microstates in the current study are obtained from a low-density cap with only 30 EEG channels and 

from eyes-open resting state. Among the common patterns observed in the healthy participants, the 

microstates MS1, MS6, MS7, MS8, and MS9 shows patterns in the parietal and occipital cortex. The 
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microstates MS2 and MS4 shows strong patterns in the sensorimotor cortex, while microstate MS5 was 

dominated by temporal-parietal sources. A unique microstate MS11 was identified in the current study, 

featuring a bilateral pattern with sources originated from the junction of posterior and temporal areas. 

 

[Insert Figure 1 here] 

 

As the dynamics of the temporal independent microstates were reconstructed from EEG time series, 

their signatures at a time scale of millisecond could be examined. Among these EEG-ms, three 

microstates demonstrated distinctive differences in their fast-evolving dynamics. The EEG-ms that 

differed between PTSD and CEC groups are marked by dashed lines in Fig. 1. The occurrence rate of 

these three microstates showed significant difference between groups. For microstates MS1 and MS11, 

the PTSD group showed significantly higher occurrence rate than the control group, whereas for 

microstate MS 10, the PTSD group showed a lower occurrence rate. All other microstates failed to 

demonstrate group-level difference between PTSD and CEC in terms of their occurrence rate. 

To further explore the neuronal substrates of these three signature microstates, the temporal dynamics 

of the microstate were compared with the time courses of BOLD signals after convolving with the 

impulse hemodynamic response function. Regions where BOLD and EEG microstate time series are 

correlated were identified using a general linear model, resulting in EEG-ms-informed networks. The 

EEG-informed networks were then compared with the resting state network calculated from fMRI data. 

The selected fMRI RSN from our data were further compared with 14 template RSN from Shirer et al. 

(2012). The fMRI RSN and their corresponding EEG-ms-informed network were designated with the 

same label of best-matched template RSN. The dorsal default model network (dDMN) was therefore 

identified associated with one of the EEG microstates, MS1 (Fig. 2). Importantly, the occurrence rate of 
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the dDMN-associated EEG microstates shows distinctive temporal dynamics between CEC and PTSD 

groups (i.e., higher in the PTSD group). Moreover, the occurrence rate of the EEG-ms was also linearly 

related to the scores of PCL-M scores in the PTSD group, indicating that more severe PTSD symptoms 

are associated with faster dynamics of the dDMN network. While functional MRI was able to pinpoint 

the anatomical regions of DMN, simultaneous EEG offers fast temporal dynamics that facilitate relating 

them to the severity of symptoms. Regarding dorsal DMN, the comparison between the fMRI RSN 

found in our data and the template RSN is shown in Supplemental Fig. S1. 

 

[Insert Figure 2 here] 

 

Two other microstates MS 10 and MS11, were also found to be associated with distinctive dynamics 

between PTSD and CEC groups. Interestingly, both MS10 and MS11 identified a similar network, 

involving bilateral insular, the cingulate cortex and the medial temporal cortex. MS10 (Fig. 3) appears to 

engage the anterior salience network (aSN) that includes the anterior insular, dorsal anterior 

cingulate/paracingulate cortex, and the medial thalamus. By the way of comparison, MS11 (Fig. 4) is 

related to the posterior salience network (pSN) that includes the posterior insular region and dorsal 

anterior cingulate cortex. However, the temporal dynamics of MS10 and MS11 show importantly 

different characteristics. For MS11, the PTSD group showed significantly higher occurrence rate than 

the control group, whereas for microstate MS 10, the PTSD group showed lower occurrence rate. 

Furthermore, the dynamics of MS10 was found to negatively correlate with SHAPS scores across the 

individual subjects, which assess hedonic experience or positive valence. Therefore, in the PTSD group, 

participants with higher level of hedonic tone are associated with lower occurrence rate of the anterior 

salience network. The dynamics of MS11 did not show any significant linear trend between the 
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occurrence rate and the level of symptoms (p>0.05 for both PCL-M and SHAPS scores). For anterior 

and posterior salience networks, the comparison between the fMRI RSN found in our data and the 

template RSN is shown in Supplemental Figures S2 and S3. 

 

[Insert Figure 3 here] 

 

[Insert Figure 4 here] 

 

Furthermore, our analysis evaluated the group-level difference in the three fMRI RSNs between 

PTSD and CEC. Using similar statistical criteria for thresholding the EEG-ms-informed networks, no 

regions with significant difference between PTSD and CEC groups were identified in the fMRI RSN 

maps. To illustrate the comparison, representative images of the group mean for PTSD and CEC are 

shown in Supplemental Fig. S4. 

DISCUSSIONS 

We investigated and compared the electrophysiological signatures of hemodynamic RSNs in male 

veterans with and without combat related PTSD. To our knowledge, this is the first examination of 

resting state networks in PTSD using a multimodal concurrent EEG-fMRI approach and also controls 

for combat exposure. We proposed a new strategy to integrate EEG and fMRI by quantifying the fast 

temporal dynamics associated with the resting state networks. Results show that in three fMRI derived 

resting state networks, namely dorsal DMN as well as anterior and posterior SNs networks, the temporal 

dynamics as characterized and measured by EEG, differ as a function of PTSD. The electrophysiological 

correlates – temporal independent EEG microstates associated with the DMN and anterior and posterior 

SNs - show aberrant occurrence rate in PTSD. In particular, the occurrence rate of the DMN is higher in 

PTSD and positively correlated with the score of PTSD severity. In contrast, the occurrence rate of the 
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anterior SN is lower in PTSD and negatively correlated with the score of hedonic tone or degree of 

pleasantness.  

Multiple brain regions have been depicted in the imaging studies of PTSD, as patterns of activations 

during tasks of symptom provocation. Hyperactivity of limbic brain regions (e.g., amygdala, insula) and 

hypo-activity of brain areas involved in emotional regulation (e.g., ventromedial prefrontal cortex 

[vmPFC], dorsal anterior cingulate cortex [dACC]) have been observed, suggesting insufficient top-

down modulation of limbic regions (especially the amygdala) by the prefrontal cortex (Rauch et al., 

2006; Liberzon and Sripada, 2007; Pitman et al., 2012). In addition, fMRI imaging of RSFC or RSN has 

become a useful tool in the investigation of the neurobiological mechanism of PTSD, as the disease 

shows symptoms of re-experiencing the traumatic events, avoidance and hyperarousal at resting state. 

Patterns of connectivity between the PTSD-implicated regions could give new information on the neural 

basis of PTSD, and on mechanisms of PTSD symptom development. 

Multimodal imaging using simultaneous EEG and fMRI has been recently exploited in studying the 

mechanisms or functions of the RSNs in the human brain (Mantini et al., 2007; Britz et al., 2010; Musso 

et al., 2010; Deco et al., 2011; Yuan et al., 2012). The simultaneously acquired EEG data provides high-

temporal resolution to capture the millisecond-level recordings of neural activity (Yuan et al., 2011, 

2012, 2016), physiological noise (Yuan et al., 2013), or head movement (Zotev et al., 2012, Wong et al., 

2016). The temporal independent EEG-ms (Yuan et al., 2012) have been discovered and shown to be 

coupled to the temporal dynamics of BOLD RSNs. More intriguingly, the source generators of the 

temporal independent EEG microstates have been reconstructed using EEG source imaging and shown 

to spatially match eight of the resting state networks established in fMRI studies (Yuan et al., 2016). 

Taken together, the temporal independent EEG-ms are electrophysiological correlates to specific resting 

state networks, both in their spatial patterns and temporal dynamics. In our current study, we capitalize 
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on the rich temporal information obtained from the EEG and investigate how PTSD relates to temporal 

electrophysiological signatures in two hemodynamic RSNs of interest, the DMN and the SN. 

During rest, disrupted connectivity within the DMN has been reported in PTSD due to traumatic life 

events (Bluhm et al., 2009; Shin et al., 2009; Daniels et al., 2011) and the related psychiatric problem of 

acute stress disorder (Lui et al. 2009; Lanius et al., 2010). Most studies examining integrity of DMN 

connectivity in PTSD have focused on civilian trauma; however, less is known about the effect of 

combat-related trauma. To date, only a few studies have examined network-level alternations in combat-

related PTSD (Daniels et al., 2010; Sripada et al. 2012; Kennis et al., 2015; DiGangi et al., 2016); and 

the findings have been inconclusive. Sripada et al. (2012) reported that PTSD veteran participants 

showed reduced coupling within DMN, as compared to a combination of combat-exposed controls and 

healthy community controls. However, the way of using a combined cohort of combat and civilian 

controls raise concern of whether the observed difference is evident in comparison to combat exposed 

veterans without PTSD, or just to the healthy civilians. In this regard, a study by DiGangi et al. (2016) 

examined details of DMN connectivity in three groups: veterans with combat-related PTSD, combat-

exposed controls without PTSD and never-traumatized healthy controls and compared their resting state 

functional connectivity. Difference in DMN associated with PTSD was found only in comparison with 

the civilian control but not in the comparison with combat-exposed veterans. Thus, it remains unclear 

whether the abnormality of resting state networks is due to the experience of trauma, or the pathology of 

PTSD. Another independent study by Kennis et al., (2015) investigated the ACC cortex, a key 

component of DMN, and found out specific difference in connectivity between veterans with combat-

related PTSD and combat exposed controls. As compared to the PTSD group or the healthy control 

group, combat controls showed increased left rostral ACC connectivity with the precentral gyrus, 

extending into the medial frontal gyrus, suggesting a protective mechanism unique to the combat 
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controls in the connectivity between rostral ACC and precentral gyrus. Nonetheless, in the examination 

of connectivity with regard to the perigenual ACC (pgACC; i.e. part of the dorsal DMN), no difference 

was reported between PTSD and combat veterans; whereas as compared to the healthy controls, veterans 

with and without PTSD showed reduced functional connectivity of the pgACC with the supramarginal 

gyrus (SMG) and middle temporal gyrus (MTG). Nonetheless, it remains unclear to what level does the 

connectivity in the DMN differs between combat PTSD and combat-exposed control. 

In this study, we compared veterans with war-related PTSD and combat-exposed veterans without 

PTSD. Results suggested increased occurrence rate of DMN-related electrophysiological states in the 

veterans with PTSD as compared to the veteran controls. The EEG microstate MS1 was observed to be 

the electrophysiological correlate of regions including the precuneus, the medial prefrontal gyrus 

(MPFC) and the bilateral dorsal lateral PFC, which constitutes the key nodes of the DMN (Buckner et 

al., 2008). The precuneus is involved in autobiographical memory and is also related to self-referential 

processing (Lou et al., 2004; Cavanna and Trimble, 2006; Yuan et al., 2014). Furthermore, precuneus 

activity has been related to trauma memory generalization (Hayes et al., 2011), and flashbacks (Whalley 

et al., 2013). Thus, alterations in the precuneus are associated with PTSD and may potentially be related 

to altered memory- and self-referential processes, such as memory deficits, intrusions or flashbacks. 

These findings altogether suggest that the DMN is disturbed in PTSD. 

Our observation regarding increased DMN temporal dynamics is in line with previous task-based 

studies of PTSD patients which report increased connectivity within DMN-related regions (Daniels et al., 

2010). An analysis of the whole brain RSFC network topology associated with combat-related PTSD 

revealed the abnormally increased connectivity of the precuneus within the DMN (Kennis et al., 2015). 

Furthermore, our investigation extended prior work by examining the DMN using a multimodal 

approach and showed increased temporal dynamics within the PTSD group. Moreover, the temporal 
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dynamics in PTSD appear positively correlated with PTSD severity. As PTSD severity increased, the 

occurrence of electrophysiological states (e.g. EEG-ms) associated with the DMN were higher, 

suggesting a neuroimaging metric that has potential as a biomarker of symptom severity. 

The salience network (Seeley et al., 2007) has also been another focus in the neuroimaging studies of 

PTSD. The SN consists of dorsal anterior cingulate (dACC) and orbital frontoinsular cortices with 

robust connectivity to subcortical and limbic structures. Further delineation of the salience network 

resulted in two sub-networks, the anterior SN and the posterior SN (Shirer et al., 2012). Studies of SN 

have suggested it plays in detecting and orienting to salient stimuli (Dosenbach et al., 2007; Sridharan et 

al., 2008), emotional control (Seeley et al., 2007), cognitive control (Menon and Uddin, 2010), and error 

processing (Ham et al., 2013). In particular, the intrinsic functional connectivity of the dACC node of 

the SN has been associated with anxiety ratings in the healthy population (Seeley et al., 2007). 

Alterations in the SN that are associated with PTSD, however, have been investigated in a limited 

number of studies. The insula and amygdala have been found to be hyperactive in PTSD (Shin and 

Liberzon, 2010; Etkin et al., 2007) and are involved in the SN (Cauda et al., 2011). Reduced ACC 

resting state functional connectivity with the thalamus, amygdala, posterior cingulate cortex 

(PCC)/precuneus, and prefrontal regions has been reported in PTSD versus non-trauma-exposed controls 

(Kennis et al., 2015; Daniels et al., 2010), trauma-exposed controls (Sripada et al., 2012a; Yin et al., 

2011) or both (Kennis et al., 2016; Sripada et al., 2012b). As discussed above, using a control group of 

non-trauma-exposed civilian or a combination of combat-exposed and non-combat-exposed controls 

raises methodological concerns and limits the interpretation of the findings. 

Our results found distinct PTSD-related signatures for the anterior SN and the posterior SN. The 

microstate MS10 was observed to be the electrophysiological correlate of the anterior SN, which 

includes the anterior insular, dorsal anterior cingulate/paracingulate cortex, and the medial thalamus. In 
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contrast, MS11 is related to the posterior salience network that includes the posterior insular region and 

dACC. The delineation of anterior and posterior SN has been documented in data-driven studies of 

resting-state fMRI data (Shirer et al., 2012) and tractography-based studies of diffusion tensor imaging 

data (Figley et al., 2015). However, the functional relevance of the subnetworks of the SN is not yet 

fully delineated. Our study compared the temporal dynamics of the EEG microstates associated with the 

anterior and posterior SN: decreased temporal dynamics in the anterior SN, yet increased dynamics in 

the posterior SN, were observed in PTSD. These results suggest an antagonist relationship between the 

anterior and posterior SN in PTSD. More interestingly, the dynamics of the anterior SN is related to the 

hedonic tone of the participants. The PTSD group was found to have significantly higher hedonic tone 

than the controls, and correspondingly the PTSD participants show a significantly lower occurrence rate 

EEG-ms associated with anterior SN. In line with the group-level finding, at an individual level in the 

PTSD group, the higher the score of hedonic tone is, the less frequently the anterior SN EEG-ms occurs. 

These results suggest that activity of the SN is disturbed in among people with PTSD while at rest, and 

are consistent with work documenting abnormal functioning of the emotion regulation network in this 

population. 

Moreover, the SN is thought to play a critical role modulating and regulating the balance between 

DMN and central-executive network (CEN) activity (Bressler and Menon, 2010). Our study found that 

the temporal dynamics of DMN and SN show antagonist features. Whereas the temporal dynamics of 

DMN become more frequently dominant in PTSD, the states of the anterior SN go in an opposite, 

diminishing direction. Interestingly, the exaggerated DMN dynamics are positively associated with the 

severity of PTSD symptoms whereas the diminishing states of the anterior SN are negatively associated 

with the hedonic tone across PTSD individuals. Moreover, the posterior SN has been also delineated in 
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our findings. Although the states of the posterior SN show higher occurrence rate in the PTSD than the 

CEC group, it remains still unclear about the functional underpinning of the posterior SN. 

Our results show the merit of multimodal imaging in studying the neural mechanism of PTSD. The 

current results confirmed our previous findings that temporal independent microstates are 

electrophysiological correlates of distinct RSNs, as shown here in two independent cohorts of adult 

participants (combat-exposed healthy males without, and males with combat-related PTSD). We 

provided novel evidence that temporal dynamics of large-scale DMN and SNs, reflected by associated 

EEG-ms, differentiate the PTSD and combat-exposed controls groups. By relating to other studies on 

EEG microstate (Lehmann et al., 1987; Koenig et al., 2002), we have previously proposed that these 

miniature brain states of temporal independent EEG microstates represent putative neuronal events in 

the form of spatially and temporally synchronized neuronal activity (Yuan et al., 2016). The 

spontaneous brain network activity may be driven by synchronized burst-type neural events (~40 ms, 

EEG-ms physiologically relevant time scale), which can be separated into temporally independent 

processes representing functional RSNs. In such a framework, the EEG-ms and RSNs may refer to the 

common building blocks of brain spontaneous neuronal activity. More importantly, the concept of the 

microstate introduces new ways to dictate the dynamics of resting state brain activity (Khanna et al., 

2015). The temporal dynamics of EEG microstates, such as occurrence rate or duration of states, are 

found to be altered in panic disorder (Kikuchi et al., 2011), schizophrenia (Kindler et al., 2011), and 

dementia (Nishida et al., 2013; Hatz et al., 2015; Grieder et al., 2016). Here, our results documented that 

temporal independent EEG microstates associated with DMN, and SNs are altered in combat-related 

PTSD. 

Our findings revealed that the temporal dynamics of the DMN- and SN-associated EEG-ms are 

associated with PTSD severity and hedonic tone, respectively, suggest that such neuroimaging metrics 
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may be used as PTSD-related biomarkers. While future investigations on such neuroimaging metrics are 

warranted to fully characterize their relevance to psychopathology of PTSD, and to clinically relevant 

outcome measures, EEG-ms have potentials in facilitating the diagnosis and prognosis of PTSD. 

Furthermore, since EEG-ms is related to the level of disease severity, it may be used as an evaluation 

biomarker in determining the effectiveness of an intervention or treatment. A relevant work from our 

group showed that the EEG microstates exploited in the current study can also be constructed from EEG 

alone data (Yuan et al., 2016). The temporal independent microstates based on stand-alone EEG data 

may be able to provide more portable and less expensive way for researching novel interventions for 

PTSD. Another potential use of EEG-ms is as neurofeedback training for user to alleviate the symptom 

via a learning by biofeedback approach (Zotev et al., 2014). Since instrumentation for EEG-based 

neurofeedback is considerably affordable and portable, it opens another avenue of use for the EEG-ms. 

 

Conclusion  

Our study employed a novel approach to study the fast dynamics of resting state networks associated 

with PTSD by using simultaneous EEG and fMRI. To our knowledge, this study for the first time 

showed differences in the fast temporal dynamics of dorsal default mode network, anterior and posterior 

salience networks, comparing veterans with combat-related PTSD to combat-exposed veteran controls 

without PTSD. The occurrence rate of the EEG microstates associated with the default mode network 

was higher in PTSD than control, and positively associated with the severity of PTSD symptoms. The 

occurrence rate of the electrophysiological state associated with the anterior salience network was lower 

in PTSD than control, and negatively associated with the hedonic tone in PTSD participants. Our 

findings contribute new information to our understanding of the neural mechanisms of PTSD, and 

further suggest that a disruption in emotion generation and regulation circuits plays a crucial role and 
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contributes to the pathophysiology of PTSD. Moreover, the study suggests that multimodal 

neuroimaging yields valuable information about large-scale neural activity at high temporal as well as 

high spatial resolution and is a useful technology for understanding neuropsychiatric disorders. 
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Table 1  

 

Demographical and clinical characteristics of PTSD group and combat exposed control (CEC) group. 

 

Characteristic 

PTSD 

(n=36) 

CEC 

(n=20) 

Age (Mean ± SD Years) 32 ±  7 34 ±  9 

PCL-M (Mean ± SD) *** 42.9 ± 14.6 18.4 ±  2.2 

CAPS (Mean ± SD) *** 54.0 ± 18.5   4.7 ±  5.1 

SHAPS (Mean ± SD) *** 29.9 ±  5.7 23.5 ±  5.8 

HARS (Mean ± SD) *** 15.3 ±  6.2   2.6 ±  3.5 

HDRS (Mean ± SD) *** 14.3 ±  5.6   2.6 ±  3.7 

MADRS (Mean ± SD) *** 17.2 ±  8.2   2.1 ±  3.8 

 

PTSD: post-traumatic stress disorder. 

CAPS: Clinician Administered PTSD Scale. 

PCL-M: the PTSD Checklist, military version. 

HARS: Hamilton Anxiety Rating Scale.  

HDRS: Hamilton Depression Rating Scale. 

SHAPS: the Snaith-Hamilton Pleasure Scale. 

MADRS: the Montgomery–Åsberg Depression Rating Scale.  

SD: standard derivation. 

*** indicates significant difference between PTSD and HC (p<0.001).           
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Figure Captions 

Figure 1. Microstates identified in CEC and PTSD groups. The pairs of microstates in dashed lines 

show distinct features between CEC and PTSD groups. 

Figure 2. Dorsal Default Mode Network. Analysis of temporal dynamics identified that microstate MS1 

(A) is related to an EEG-informed Network (C) which resembles the fMRI dorsal Default Mode 

Network (D), showing at positions z=4, 21 and 32 (B). (E) Occurrence rate of microstate MS1 differs 

between CEC and PTSD groups (p = 0.02). (F) In all thirty-six PTSD individuals, the occurrence rate of 

microstate MS1 is positively correlated to the score of symptom severity measured by PCL-M (r = 0.51, 

p = 0.004).  

Figure 3.  Anterior Salience Network. Analysis of temporal dynamics identified that microstate MS10 

(A) is related to an EEG-informed network (C) which resembles the fMRI Anterior Salience Network 

(D), showing at positions z=2, 16 and 44 (B). (C) Occurrence rate of microstate MS10 differs between 

CEC and PTSD groups (p = 0.03). (D) In the PTSD individuals, the occurrence rate of microstate MS10 

is inversely correlated to the score of hedonic tone measured by the Snaith-Hamilton Pleasure Scale 

(SHAPS) (r = -0.46, p = 0.006). 

Figure 4.  Posterior Salience Network. Analysis of temporal dynamics identified that microstate MS11 

(A) is related to an EEG-informed network (C) which resembles the fMRI Posterior Salience Network 

(D), showing at positions z=2, 10 and 32 (B). (C) Occurrence rate of microstate MS11 significantly 

differs between CEC and PTSD groups (p = 0.0004). Among the PTSD individuals, neither the score of 

PTSD severity or the score of hedonic tone was correlated with the occurrence rate of microstate MS11. 
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Figure S1. An fMRI RSN obtained from current study was matched to a template RSN of dorsal 

default mode network. 



 

Figure S2. An fMRI RSN obtained from current study was matched to a template RSN of anterior 

salience network. 

 

 

 

 

 

 

 



 

Figure S3. An fMRI RSN obtained from current study was matched to a template RSN of posterior 

salience network. 

 

 

 

 

 

 

 



 

Figure S4. Group average images of RSNs in PTSD and CEC, threshold at p<0.01 (uncorrected). No 

regions with significant difference between PTSD and CEC groups were identified at pcorrected<0.05. 
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Abstract 

Posttraumatic stress disorder (PTSD) is a chronic and disabling neuropsychiatric disorder characterized 

by insufficient top-down modulation of amygdala activity by the prefrontal cortex. Real-time fMRI 

neurofeedback (rtfMRI-nf) is an emerging method with potential for modifying amygdala-prefrontal 

cortex interactions. We report the first controlled emotion self-regulation study in veterans with combat-

related PTSD utilizing rtfMRI-nf of amygdala activity. The study included three rtfMRI-nf training 

sessions wherein brain activity was simultaneously monitored via electroencephalography (EEG) and 

fMRI. PTSD severity was assessed before and after the training using the Clinician-Administered PTSD 

Scale (CAPS). Our results showed that PTSD patients in the experimental group (EG, n=20) learned to 

upregulate BOLD activity of the left amygdala (LA) using the rtfMRI-nf during a happy emotion 

induction task. PTSD patients in the control group (CG, n=11) were provided with a sham rtfMRI-nf. 

The EG participants who completed the study showed a significant reduction in total CAPS ratings, 

including significant reductions in avoidance and hyperarousal symptoms. They also exhibited a 

significant reduction in comorbid depression severity. Overall, 80% of the EG demonstrated clinically 

meaningful reductions in CAPS ratings, compared to 38% in the CG. During the first rtfMRI-nf session, 

the EG achieved a significant increase in the blood-oxygenation-level-dependent (BOLD) signal in the 

LA. Functional connectivity of the LA with the orbitofrontal cortex and the dorsolateral prefrontal 

cortex was enhanced during the rtfMRI-nf training, and these enhancements significantly and positively 

correlated with the CAPS ratings. Left-lateralized enhancement in upper alpha EEG coherence also 

exhibited a significant positive correlation with CAPS scores. Our findings demonstrated that rtfMRI-nf 

of amygdala activity has the potential to correct the amygdala-prefrontal functional connectivity 

deficiencies observed in PTSD and rtfMRI-nf can be seen as a promising technique for enhancing PTSD 

treatments. 

 

Keywords: PTSD, combat trauma, neurofeedback, real-time fMRI, EEG-fMRI, amygdala, prefrontal 

cortex, orbitofrontal cortex, functional connectivity, EEG coherence  
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1.  Introduction 

Posttraumatic stress disorder (PTSD) is a chronic and disabling neuropsychiatric disorder with 

lasting negative effects on personal well-being and high economic costs to society (Kessler, 2000). 

Among veterans with PTSD who receive trauma-focused treatment, such as cognitive processing 

therapy or prolonged exposure therapy, only 50% to 70% achieve clinically meaningful symptom 

improvement, and as many as 66% retain their PTSD diagnosis after treatment (Steenkamp et al., 2015). 

Treatment of PTSD is complicated by the fact that this disorder afflicts functions of several brain 

systems (Liberzon & Abelson, 2016). First, abnormalities in the salience network (SN) are associated 

with exaggerated threat detection. This network includes the amygdala, the insula, the dorsal anterior 

cingulate cortex (dACC), and other regions. Second, abnormal functioning of the executive 

function/emotion regulation (EF/ER) system leads to cognitive and emotion regulation impairments. 

This system includes regions of the prefrontal cortex (PFC): the dorsolateral PFC (DLPFC), the 

ventrolateral PFC (VLPFC), and the medial PFC (MPFC). The MPFC, in turn, includes the 

ventromedial PFC (VMPFC), the dorsomedial PFC (DMPFC), the orbitofrontal cortex (OFC), and 

encompasses the anterior/rostral ACC (rACC), and other regions. Third, functional deficiencies in the 

brain circuits involved in contextual processing (CP) lead to difficulties in threat discrimination. These 

circuits include the hippocampus, the thalamus, the locus coeruleus, and the MPFC areas (Liberzon & 

Abelson, 2016).  

Functional neuroimaging studies of emotional processing have demonstrated prominent 

involvement of the above-mentioned brain systems (SN, EF/ER, CP) in the neurobiology of PTSD (e.g., 

Etkin & Wager, 2007; Lanius et al., 2006; Patel et al., 2012; Shin & Liberzon, 2010). In particular, 

numerous studies have shown hyperactivity of the amygdala and hypoactivity of the PFC regions during 
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emotional processing in PTSD patients compared to control participants (e.g., Etkin & Wager, 2007). 

This finding is often interpreted as indicating an insufficient top-down regulation of amygdala activity 

by the PFC. It also suggests that functional connectivity between the amygdala and the PFC is 

abnormally reduced in PTSD. Among the PFC regions, the OFC, along with the rACC and the 

subgenual ACC (sgACC), has the densest neuronal connections to the amygdala (Ghashghaei et al., 

2007). The lateral OFC (LOFC, BA 47, part of the VLPFC, as well as lateral BA 11) and the medial 

OFC (MOFC, BA 11, part of the MPFC adjacent to the VMPFC) play important roles in emotion 

regulation and reward/punishment guided learning (Kringelbach & Rolls, 2004; Ochsner et al., 2002; 

Rushworth et al., 2011). Abnormalities in the LOFC and MOFC functions are observed in anxiety 

disorders (Milad & Rauch, 2007), including hypoactivity of these regions in PTSD (Lanius et al., 2006; 

Patel et al., 2012).  

Real-time fMRI neurofeedback (rtfMRI-nf) is a promising neuromodulation technique that allows 

for non-invasive training of volitional modulation of blood-oxygenation-level-dependent (BOLD) 

activity of small, precisely defined regions deep inside the brain (e.g., Birbaumer et al., 2013; Sulzer et 

al., 2013; Thibault et al., 2016; Weiskopf, 2012). We have shown previously that rtfMRI-nf of amygdala 

activity enhanced both functional and effective connectivity between the amygdala and the PFC (Zotev 

et al., 2011, 2013). This is not surprising because rtfMRI-nf training involves goal-oriented behavior that 

engages the EF/ER system (Zotev et al., 2016). With the amygdala as the target region, the rtfMRI-nf 

training can enhance top-down modulation of amygdala activity by the EF/ER. Notably, rtfMRI-nf of 

amygdala activity has been shown to reduce depressive symptoms in patients with major depressive 

disorder (MDD; Young et al., 2017; Zotev et al., 2016). In addition, EEG recordings during the rtfMRI-

nf procedure revealed left-lateralized enhancement in EEG coherence that positively correlated with 
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depression severity (Zotev et al., 2016). These findings suggest that rtfMRI-nf of amygdala activity can 

correct (reverse) the functional connectivity abnormalities observed in MDD, and, possibly, other 

neuropsychiatric disorders. 

Two recent pilot studies explored the feasibility of using rtfMRI-nf of amygdala activity for the 

treatment of PTSD. The first pilot study included 10 PTSD patients who learned during one rtfMRI-nf 

session to downregulate BOLD activity of the bilateral amygdala using rtfMRI-nf while viewing 

personalized trauma words (Nicholson et al., 2017). Increased activation in the DLPFC and LOFC, as 

well as enhanced fMRI connectivity of the amygdala with the DLPFC and DMPFC, were observed 

during the rtfMRI-nf task compared to a control task (Nicholson et al., 2017). However, changes in 

PTSD severity were not assessed in this study. The second pilot study included three combat veterans 

with chronic PTSD, who were asked to downregulate BOLD activity of the bilateral amygdala after 

listening to a personal trauma-based audio script (Gerin et al., 2016). After three rtfMRI-nf sessions, two 

participants showed clinically meaningful reductions in PTSD severity. Increased resting fMRI 

connectivity of the amygdala with the MOFC and rACC/sgACC was observed after the training (Gerin 

et al., 2016). Overall, both studies had limited statistical power due to small samples. Moreover, neither 

study included a control group, so specificity of the reported effects to the amygdala-based rtfMRI-nf 

could not be verified.  

Here, we report the results from the first rtfMRI-nf study of emotion self-regulation in a sufficiently 

large group of veterans with combat-related PTSD (n=31 across an experimental [EG] and control group 

[CG]: EG, n=20, CG, n=11). Moreover, this study involved a significant enhancement of the assessment 

of the effects of the rtfMRI-nf procedure by simultaneously measuring neurobiological activity via fMRI 

and EEG. PTSD participants learned to upregulate BOLD activity of the left amygdala (LA) using 
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rtfMRI-nf while performing a positive emotion induction task introduced earlier (Zotev et al., 2011). We 

tested the following hypotheses: neurofeedback-naive participants receiving the LA-based rtfMRI-nf 

would i) be able to significantly increase BOLD activity of the LA during the training; ii) report 

clinically meaningful reductions in PTSD severity; iii) evidence enhanced fMRI connectivity between 

the LA and key PFC regions involved in emotion regulation, even after controlling for comorbid 

depression; and iv) evidence EEG-measured effects of the rtfMRI-nf training will be observed in 

simultaneously recorded EEG data.  

2.  Methods   

2.1. Study overview 

The study was conducted at the Laureate Institute for Brain Research and approved by the Western 

Institutional Review Board (IRB). All study procedures were carried out in accordance with the 

principles expressed in the Declaration of Helsinki.  

The study included eight sessions (visits), illustrated schematically in Fig. 1A. The visits were 

typically scheduled one week apart. Each visit involved a psychological evaluation by a licensed 

psychiatrist in addition to experimental procedures. 

Visit 1 included an initial assessment. It included administration of the following tests: the 

Edinburgh Handedness Inventory (EHI, Oldfield, 1971), the Family Interview for Genetic Studies 

(FIGS, Maxwell, 1992), the Fagerström Test for Nicotine Dependence (FTND, Fagerström, 1978), the 

Hollingshead Four-factor Index of Socioeconomic Status (SES, Hollingshead, 1975), the Quick 

Inventory of Depressive Symptomatology (QIDS, Rush et al., 2000), and the 21-item Hamilton 

Depression Rating Scale (HDRS, Hamilton, 1960). 
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Visit 2 included the initial assessment of PTSD severity by means of the Clinician-Administered 

PTSD Scale for DSM-IV (CAPS; Blake et al., 1990; Weathers et al., 2001). The CAPS was administered 

by trained raters blinded to the group participants were assigned to. It also included completion of the 

20-item Toronto Alexithymia Scale (TAS-20; Bagby et al., 1994), and the Emotion Contagion Scale 

(EC; Doherty, 1997). 

Visit 3 included the emotional counting Stroop task (ecStroop; Whalen et al., 2006) with 

simultaneous fMRI, and the Script-Driven Imagery Procedure (SDIP; Pitman et al., 1987) with the 

Responses to Script-Driven Imagery Scale (RSDI; Hopper et al., 2007). At the beginning of the visit, the 

HDRS, the Montgomery-Asberg Depression Rating Scale (MADRS; Montgomery & Asberg, 1979), the 

PTSD Checklist Military Version (PCL-M; Weathers et al., 1991), the Hamilton Anxiety Rating Scale 

(HARS; Hamilton, 1959), and the Snaith-Hamilton Pleasure Scale (SHAPS; Snaith et al., 1995) were 

administered. The Profile of Mood States (POMS; McNair et al., 1971) and Visual Analog Scales (VAS) 

ranging from 0 (not at all) to 10 (extremely) for happy, restless, sad, anxious, irritated, drowsy, and alert 

states were completed by participants both before and after the ecStroop and the SDIP procedures. 

Visits 4, 5, and 6 were the neurofeedback training sessions, which involved the rtfMRI-nf with 

simultaneous EEG procedure, illustrated in Fig. 1B. At the beginning of each session, the HDRS, the 

MADRS, the HARS, the PCL-M, and the SHAPS scales were administered. The POMS and the VAS 

were completed both before and after the rtfMRI-nf procedure in each visit. 

Visit 7 included the same tests and procedures as Visit 3. 

Visit 8 included the final assessments of PTSD severity using the CAPS. 
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2.2. Participants 

Participants provided a written informed consent as approved by the IRB. They met the Diagnostic 

and Statistical Manual of Mental Disorders-Fourth Edition Text Revision (DSM-IV-TR) (American 

Psychiatric Association, 2000) criteria for PTSD. All the subjects were male and had PTSD related to 

combat trauma as their primary diagnosis. They received monetary compensation for their participation 

in the study. 

Participants were randomly assigned to either the experimental group (EG) or the control group 

(CG) at approximately a 2:1 ratio and they were blinded to group status. During the rtfMRI-nf training 

sessions (visits 4, 5, 6), the EG was provided with rtfMRI-nf based on BOLD activity of the LA (Zotev 

et al., 2011). The CG was provided with control rtfMRI-nf based on BOLD activity of a brain region, 

presumably not involved in emotion processing (Zotev et al., 2011). Selection of the target regions for 

rtfMRI-nf is described in detail below. 

Table 1 reports main characteristics of the EG and CG groups. In the EG, 20 participants completed 

the first rtfMRI-nf session (visits 1-4), and 15 of them completed the whole study (visits 1-8, Fig. 1A). 

In the CG, 11 subjects completed the first rtfMRI-nf session, and 8 of them completed the whole study. 

There were no significant group differences in age, CAPS, PCL-M, HDRS, or MADRS ratings at 

baseline.  

2.3. Experimental protocol 

The experimental protocol for each rtfMRI-nf session (Fig. 1B) was similar to the one we employed 

previously in rtfMRI-nf studies with healthy participants (Zotev et al., 2011, 2014) and MDD patients 

(Young et al., 2017; Zotev et al., 2016). Prior to each rtfMRI-nf session, a participant was given detailed 
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instructions that included an overview of the experiment and an explanation of each experimental task. 

The participant was asked to think of and write down three happy autobiographical memories, keeping 

them private. It was suggested that he use those three memories at the beginning of the rtfMRI-nf 

training to evaluate their effects, and then explore various other happy autobiographical memories as the 

training progressed to enhance happy emotion and improve rtfMRI-nf performance. 

Each rtfMRI-nf session included seven fMRI runs (Fig. 1B), and each run lasted 8 min 46 s. During 

the initial and final Rest runs, participants were asked to relax and rest while looking at a fixation cross. 

The five task runs – the Practice run, Run 1, Run 2, Run 3, and the Transfer run – consisted of 

alternating 40-s long blocks of Happy Memories, Count, and Rest conditions (Fig. 1B). The real-time 

GUI display screens for these conditions are shown schematically in Fig. 1C. Each condition was 

specified by visual cues that included a colored square with the condition name at the center of the 

screen and a text line at the top of the screen. For the Happy Memories condition blocks, participants 

were instructed to feel happy by evoking and contemplating happy autobiographical memories while 

simultaneously trying to raise the variable-height red rtfMRI-nf bar on the screen to the target level of 

the blue bar (Fig. 1C, left). The red bar height was updated every 2 s, and was also indicated by the red 

numeric value shown above the bar (Fig. 1C, left). For the Count condition blocks, the subjects were 

instructed to mentally count back from 300 by subtracting a given integer as shown on the screen (Fig. 

1C, middle). For the Rest condition blocks, participants were asked to rest and let their minds wander 

while looking at the screen (Fig. 1C, right). 

During the four rtfMRI-nf runs (Practice, Runs 1-3), participants performed the three experimental 

tasks as indicated by the GUI display screens shown in Fig. 1C. The target level for the rtfMRI-nf (blue 

bar in Fig. 1C, left) was fixed during each run, but was raised in a linear fashion across the four nf runs. 
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It was set to 0.5%, 1.0%, 1.5%, and 2.0% for the Practice run, Run 1, Run 2, and Run 3, respectively 

(see Fig. 3A below). During the Practice run, participants were given an opportunity to become familiar 

with (or refresh knowledge of) the rtfMRI-nf procedure and to consider the emotional impact of the 

three happy autobiographical memories they had prepared. During the Transfer run, the participants 

performed the same tasks as during the preceding nf runs, except that no bars were shown on the screen 

during the Happy Memories conditions, and the text line read “As Happy as possible”. The Transfer run 

was included to evaluate whether participants’ learned ability to control BOLD activity of the target ROI 

generalized beyond the actual rtfMRI-nf training when the nf information was no longer provided. The 

Count conditions involved counting back from 300 by subtracting 3, 4, 6, 7, and 9 for the Practice run, 

Run 1, Run 2, Run 3, and the Transfer run, respectively. After each experimental run with the Happy 

Memories task, a participant was asked to verbally rate his performance on a scale from 0 (not at all) to 

10 (extremely) by answering two questions: “How successful were you at recalling your happy 

memories?” and “How happy are you right now?”. 

 

2.4. Regions of interest 

The rtfMRI-nf procedure was based on the target region-of-interest (ROI) approach we employed 

previously (Zotev et al., 2011, 2016). Two target ROIs were defined as 14-mm diameter spheres in the 

stereotaxic array of Talairach and Tournoux (Talairach & Tournoux, 1988). The target ROI centered at 

(−21, −5, −16) in the left amygdala (LA) region (Fig. 2A) was used for the EG. The target ROI centered 

at (−42, −48, 48) in the left horizontal segment of the intraparietal sulcus (LHIPS) region (Fig. 2B) was 

used for the CG. The specified ROI centers were selected based on quantitative meta-analyses of 

functional neuroimaging studies investigating the role of the amygdala in emotion processing (Sergerie 
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et al., 2008) or the role of the HIPS in number processing (Dehaene et al., 2003). During the experiment, 

these target ROIs were transformed from the Talairach space to each participant’s individual fMRI (EPI) 

image space and used to provide rtfMRI-nf signal depending on the group. For offline fMRI data 

analysis, the left amygdala (LA) and the right amygdala (RA) ROIs (Fig. 2C) were defined anatomically 

as the amygdala regions specified in the Talairach-Tournoux brain atlas in AFNI (Cox, 1996; Cox & 

Hyde, 1997). 

2.5. Data acquisition 

All experiments were conducted on the General Electric Discovery MR750 3T MRI scanner with a 

standard 8-channel receive-only head coil (Fig. 2D). A single-shot gradient echo EPI sequence with 

FOV/slice=240/2.9 mm, TR/TE=2000/30 ms, flip angle=90°, 34 axial slices per volume, slice gap=0.5 

mm, SENSE R=2 in the phase encoding (anterior-posterior) direction, acquisition matrix 96×96, 

sampling bandwidth=250 kHz, was employed for fMRI. Each fMRI run lasted 8 min 46 s and included 

263 EPI volumes (the first three EPI volumes were included to allow the fMRI signal to reach a steady 

state and were excluded from data analysis). Physiological pulse oximetry and respiration waveforms 

were recorded simultaneously with fMRI. The EPI images were reconstructed into a 128×128 matrix, 

resulting in 1.875×1.875×2.9 mm
3
 fMRI voxels. A T1-weighted 3D MPRAGE sequence with 

FOV/slice=240/1.2 mm, TR/TE=5.0/1.9 ms, TD/TI=1400/725 ms, flip angle=10°, 128 axial slices per 

slab, SENSE R=2, acquisition matrix 256×256, sampling bandwidth=31.2 kHz, scan time=4 min 58 s, 

was used for structural imaging. It provided high-resolution anatomical brain images with 

0.94×0.94×1.2 mm
3
 voxels.  

EEG recordings were performed simultaneously with fMRI (Fig. 2D) using a 32-channel MR-

compatible EEG system from Brain Products, GmbH. The EEG system clock was synchronized with the 
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MRI scanner 10 MHz clock using the Brain Products’ SyncBox device. EEG data were acquired with 

0.2 ms temporal and 0.1 µV measurement resolution (16-bit 5 kS/s sampling) in 0.016...250 Hz 

frequency band with respect to FCz reference. All technical details of the EEG-fMRI system 

configuration and data acquisition were reported previously (Zotev et al., 2012). Similar to our recent 

study (Zotev et al., 2016), the EEG recordings in the present work were passive, i.e. no EEG information 

was used in real time as part of the experimental procedure. 

2.6. Real-time data processing 

The rtfMRI-nf was implemented using the custom real-time fMRI system utilizing real-time 

functionality of AFNI (Cox, 1996; Cox & Hyde, 1997) as described previously (Zotev et al., 2011). A 

high-resolution MPRAGE anatomical brain image and a short EPI dataset (5 volumes) were acquired 

prior to each rtfMRI-nf session. The last volume in the EPI dataset was used as a reference EPI volume 

defining the subject’s individual EPI space. The LA and LHIPS target ROIs, defined in the Talairach 

space (Fig. 2A,B) were transformed to the individual EPI space using the MPRAGE image data. The 

resulting ROIs in the EPI space contained approximately 140 voxels each. During the subsequent fMRI 

runs (Fig. 1B), the AFNI real-time plugin was used to perform volume registration of each acquired EPI 

volume to the reference EPI volume (motion correction) and export mean values of fMRI signals for 

these ROIs in real time. The custom developed GUI software was used to further process the exported 

fMRI signal values and display the ongoing rtfMRI-nf information (Fig. 1C). The rtfMRI signal for each 

Happy Memories condition was computed as a percent signal change relative to the baseline obtained by 

averaging fMRI signal values for the preceding Rest condition block (Fig. 1B). A moving average of the 

current and two preceding rtfMRI signal values was computed to reduce effects of fMRI noise and 

physiological artifacts (Zotev et al., 2011). This average value was used to set the height of the red 
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rtfMRI-nf bar (Fig. 1C) every TR=2 s. 

2.7. fMRI data analysis  

In this work our analysis focuses on the first neurofeedback training session (Visit 4) to evaluate 

and understand effect of rtfMRI-nf in neurofeedback-naive PTSD individuals before examining effects 

across multiple sessions. Offline analysis of the fMRI data was performed in AFNI as described in detail 

in Supplementary material (S1.1). The analysis involved fMRI pre-processing with despiking, 

cardiorespiratory artifact correction (Glover et al., 2000), slice timing correction, and volume 

registration. A general linear model (GLM) analysis with Happy Memories and Count block-stimulus 

conditions was applied to the preprocessed fMRI data. Average GLM-based fMRI percent signal 

changes were computed for the LA and RA ROIs, shown in Fig. 2C. 

2.8. fMRI connectivity analysis  

Analysis of fMRI functional connectivity for the LA as the seed region was performed within the 

GLM framework. The fMRI data were bandpass filtered between 0.01 Hz and 0.08 Hz. The six fMRI 

motion parameters were similarly filtered. The LA ROI (Fig. 2C) was transformed to each subject’s 

individual high-resolution anatomical image space, and then to the individual EPI image space. The LA 

ROI in the EPI space included ~100 voxels. In addition, 10-mm-diameter ROIs were defined within the 

left and right frontal white matter (WM) and within the left and right ventricle cerebrospinal fluid (CSF). 

These ROIs were defined using individual high-resolution anatomical brain maps and similarly 

transformed. The resulting ROIs in the individual EPI space were used as masks to obtain average time 

courses for the LA, left and right WM, and left and right CSF regions. The GLM-based functional 

connectivity analysis was conducted for each task run using the 3dDeconvolve AFNI program. The -
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censor option was used to restrict the analysis to the Happy Memories condition blocks in each run. The 

GLM model included the time course of the LA ROI as the stimulus (seed) regressor. Nuisance 

covariates included five polynomial terms, time courses of the six fMRI motion parameters (together 

with the same time courses shifted by one TR), time courses of the left and right WM and CSF ROIs to 

reduce physiological noise [Jo et al., 2010], and step functions to account for the breaks in the data 

between the Happy Memories condition blocks. Each GLM analysis provided R
2
-statistics and t-

statistics maps for the stimulus regressor term, which we used to compute the correlation coefficient for 

each voxel. The correlation coefficient maps were Fisher r-to-z normalized, transformed to the Talairach 

space, and re-sampled to 2×2×2 mm
3
 isotropic voxel size. The resulting individual LA functional 

connectivity maps were spatially smoothed (5 mm FWHM) and submitted to group analyses. 

Group analysis of fMRI connectivity for one task run, e.g. the Practice run, was performed using the 

3dttest++ AFNI program. The analysis included three covariates: the CAPS ratings, the HDRS ratings, 

and the average individual fMRI connectivity of the LA with central white matter. The last covariate 

accounted for residual spurious LA connectivity effects caused, for example, by head motion. The 

central white matter mask was defined using the standard AFNI white matter mask in the Talairach 

space (TT_wm), that was re-sampled to 2×2×2 mm
3
 voxels, subjected to three-step erosion, and limited 

to 15<z<35 mm slab. The individual-subject LA connectivity values for the same run were averaged 

within this mask to yield a single covariate value for each subject. Centering of the three covariates was 

performed within the 3dttest++ program by subtraction of their means. The LA fMRI connectivity vs 

CAPS correlation effect was the main effect of interest. The statistical results were corrected for 

multiple comparisons by controlling the family-wise-error (FWE). The correction was based on Monte 

Carlo simulations implemented in the AlphaSim AFNI program.  
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Analysis of fMRI connectivity enhancement across the four neurofeedback runs was conducted as 

follows. An fMRI connectivity slope (FCS) was defined for each voxel as a slope of a linear trend in 

fMRI connectivity with the LA seed ROI across the Happy Memories conditions in the four rtfMRI-nf 

runs (Practice, Run 1, Run 2, Run 3), as illustrated in Fig. 3B. The LA fMRI connectivity maps in the 

Talairach space for the four rtfMRI-nf runs were concatenated, and the 3dTfitter AFNI program was 

used to carry out a voxel-wise linear trend analysis, yielding the FCS map for each subject. Group 

analysis on the FCS data was performed using the 3dttest++ AFNI program. The analysis included three 

covariates: CAPS ratings, HDRS ratings, and the average individual LA FCS for central white matter. 

The last covariate was computed using the same white matter mask as described above, and accounted 

for spurious LA connectivity trends across the four runs. The FCS vs CAPS correlation effect and the 

mean FCS effect were the main effects of interest. The statistical results were corrected for multiple 

comparisons by controlling the FWE as explained above. 

2.9. EEG data analysis 

Offline analysis of EEG data, acquired simultaneously with fMRI, was performed using 

BrainVision Analyzer 2.1 software (Brain Products, GmbH) as described in detail in Supplementary 

material (S1.2). Removal of EEG artifacts was based on the average artifact subtraction and independent 

component analysis (Bell & Sejnowski, 1995; McMenamin et al., 2010). Channel Cz was selected as a 

new reference, and FCz was restored as a regular channel. Following the artifact removal, data from 29 

EEG signal channels were down sampled to 8 ms temporal resolution. The upper alpha EEG band was 

defined individually for each participant as [IAF...IAF+2] Hz, where IAF is the individual alpha peak 

frequency. The IAF was determined by inspection of average EEG spectra for the occipital and parietal 

EEG channels across the Rest condition blocks in the four rtfMRI-nf runs (Fig. 1B). 
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2.10. EEG coherence analysis 

EEG coherence analysis was conducted separately for the Rest and Happy Memories conditions in 

each of the four rtfMRI-nf runs (Fig. 1B). The analysis included a segmentation with 4.096 s intervals 

(with exclusion of bad intervals, see S1.2), a complex FFT with 0.244 Hz spectral resolution, and the 

Coherence transform implemented in the Analyzer 2.1. A coherence value for signals from two EEG 

channels at a given frequency was computed as the squared magnitude of their cross spectrum value 

normalized by their power spectrum values at the same frequency (‘magnitude-squared coherence’ 

method). An average coherence value for the upper alpha band [IAF...IAF+2] Hz was then computed for 

each channel pair.  

Analysis of EEG coherence enhancement across the four neurofeedback runs was performed as 

follows. An EEG coherence slope (ECS) was defined for each channel pair as a slope of a linear trend in 

the upper alpha EEG coherence changes between the Rest and Happy Memories conditions across the 

four rtfMRI-nf runs (Practice, Run 1, Run 2, Run 3), as illustrated in Fig. 3C. Analysis of partial 

correlations between the ECS values and the CAPS ratings, controlling for HDRS ratings, was 

performed using the partialcorr() function in MATLAB. To alleviate the multiple comparisons problem, 

average ECS values were computed for previously defined groups of fronto-temporal EEG channels 

(Zotev et al., 2016), and their partial correlations with the CAPS ratings were evaluated. 

2.11. Statistical tests 

Inferential statistical analyses were performed in IBM SPSS Statistics 20. Correction for multiple 

comparisons was based on controlling the false discovery rate (FDR q), which was computed by 

applying the 3dFDR AFNI program to a column of uncorrected p-values from multiple tests. Partial 
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correlation analyses were conducted using MATLAB Statistics toolbox. 

3.  Results 

3.1. Psychological measures 

Changes in PTSD severity and comorbid depression severity for the PTSD veterans who completed 

the study are reported in Table 2. The initial and final CAPS ratings were assessed during visits 2 and 8, 

respectively (Fig. 1A). The initial and final HDRS ratings were determined during visits 3 and 7, 

respectively. The participants in the EG showed a significant reduction in the total CAPS ratings after 

the study (EG: t(14)=−3.69, p<0.0024, q<0.004), with significant reductions in sub-scores for avoidance 

symptoms (EG: t(14)=−3.78, p<0.0020, q<0.004) and hyperarousal symptoms (EG: t(14)=−2.54, 

p<0.024, q<0.030). The EG participants also exhibited a significant reduction in the HDRS ratings (EG: 

t(14)=−4.61, p<0.0004, q<0.002).  

The participants in the CG also showed a nonsignificant reduction in total CAPS ratings (CG: 

t(7)=−1.75, p<0.124, q<0.207). The corresponding reductions in avoidance symptoms (CG: t(7)=−1.95, 

p<0.092, q<0.207) and HDRS ratings (CG: t(7)=−2.28, p<0.056, q<0.207) were also nonsignificant.  

 

In the EG, 12 participants out of 15 (80%) demonstrated clinically meaningful reductions in CAPS 

ratings (by 10 points or more). In the CG, 3 subjects out of 8 (or 38%) showed clinically meaningful 

CAPS reductions. However, no significant difference in the CAPS rating changes (final vs initial) was 

observed between the two groups (EG vs CG: t(21)=−0.90, p<0.377). Similarly, the HDRS rating 

changes (final vs initial) showed no significant group difference (EG vs CG: t(21)=−0.22, p<0.825). 

3.2. Amygdala BOLD activity 
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Figure 4 shows results of the offline fMRI activation analysis for the LA and RA ROIs (Fig. 2C). 

The results are for the first rtfMRI-nf session (visit 4; EG: n=20; CG: n=11). The LA BOLD activity 

levels for the Happy Memories conditions for the EG (H vs R, Fig. 4A, left) were significant for Run 3 

(R3: t(19)=3.03, p<0.007, q<0.035) and for the Transfer run (TR: t(19)=2.63, p<0.017, q<0.042). There 

was no significant difference in the LA activity between these two runs (TR vs R3: t(19)=−1.33, 

p<0.199). The RA BOLD activity levels for the EG (H vs R, Fig. 4A, right) were significant for Run 3 

(R3: t(19)=3.04, p<0.007, q<0.034) and trended toward significance after correction for the Transfer run 

(TR: t(19)=2.24, p<0.037, q<0.093). Similar to the LA, there was no significant difference in the RA 

activity between these two runs (TR vs R3: t(19)=−1.16, p<0.259). For the CG, BOLD activity levels for 

either the LA or the RA were not significant (Fig. 4B). 

To compare the neurofeedback effects between the EG and CG groups, we examined average 

individual BOLD activity levels across the three rtfMRI-nf training runs (Run1, Run 2, Run 3). For the 

average LA BOLD activity levels, Levene’s test for equality of variances suggested that variances 

differed between the groups (F=4.79, p<0.037). An independent-samples t-test with Welch-

Satterthwaite adjustment indicated that the average LA BOLD activity levels were significantly higher 

for the EG than for the CG (t(28.18)=2.38, p<0.024, equal variances not assumed). For the average RA 

BOLD activity levels, variances did not differ between the groups (F=0.14, p<0.908). The difference in 

the average RA BOLD activity levels between the EG and the CG trended toward significance 

(t(29)=1.76, p<0.088). 

3.3. Amygdala connectivity during Practice 

All fMRI connectivity and EEG coherence results reported below correspond to the first rtfMRI-nf 

session (Fig. 1A, visit 4). The initial CAPS ratings (visit 2) and initial HDRS ratings (visit 3) were used 
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in partial correlation analyses.  

Figure 5 shows whole-brain group statistical maps of the correlation between the LA fMRI 

connectivity during Happy Memories conditions in the Practice run and CAPS ratings for the EG. Data 

from n=19 EG participants were included in the analysis. One outlier EG participant, whose initial 

CAPS rating was much higher (CAPS=95) than the rest of the EG subjects, was excluded from the 

analysis to avoid biasing the group results. The group statistical maps in Fig. 5 were thresholded at 

t=±2.95 (uncorr. p<0.01) and clusters containing at least 75 voxels (FWE corr. p<0.05) are shown in the 

figure. The cluster properties are described in Table 3. The results in Fig. 5 and Table 3 demonstrate 

that, at the beginning of the training, fMRI connectivity with the LA showed negative correlations with 

PTSD severity for many prefrontal brain regions, particularly the LOFC, the MOFC, the rACC, and the 

DLPFC. For the CG, the correlations during the Practice run are similar to those for the EG in Fig. 5. 

The negative correlation effects mapped in Fig. 5 are illustrated in Figure 6. Note that several other 

regions exhibited positive correlations between their fMRI connectivity with the LA and CAPS ratings, 

but the corresponding clusters were not large enough to survive the whole-brain FWE correction. For 

example, these regions included the left caudate at (−19, −25, 20) (t=5.21, 62 vox.), the right 

mediodorsal nucleus (MD) of the thalamus at (3, −16, 15) (t=5.46, 26 voxels), the right amygdala at (25, 

−7, −20) (t=5.00, 24 voxels), the right precuneus (PCun, BA 39) at (27, −57, 31) (t=4.24, 22 voxels), the 

left precuneus (BA 7) at (−25, −61, 31) (t=4.24, 22 voxels). The correlation effects for the R MD and the 

R PCun are also illustrated in Fig. 6. 

3.4. Amygdala connectivity enhancement 

Figure 7 exhibits whole-brain group statistical maps of the correlation between the LA fMRI 
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connectivity slope (FCS) across Happy Memories conditions in the four rtfMRI-nf runs (Fig. 3B) and 

CAPS ratings. The results are for the same EG participants (n=19) as in Figs. 5 and 6. The maps in Fig. 

7 were thresholded at t=±2.95 (uncorr. p<0.01) and clusters containing at least 81 voxels (FWE corr. 

p<0.025) are shown in the figure. The cluster properties are specified in Table 4. The table also includes 

statistical results for the mean FCS effect, thresholded and clustered in the same way (FWE corr. 

p<0.025, to account for testing the two effects). The mean FCS effect was obtained in the same group 

analysis and corresponds to the mean values of the covariates (CAPS ratings, HDRS ratings, LA FCS 

for white matter). The results in Fig. 7 and Table 4 demonstrate that the fMRI connectivity enhancement 

(FCS) with the LA during the training exhibited positive correlations with PTSD severity for several 

prefrontal regions, including the LOFC and the DLPFC. The left DLPFC also showed a significant 

fMRI connectivity enhancement with the LA that was independent of the CAPS and HDRS variability 

(the mean FCS effect, Table 4). For the CG, no significant positive FCS vs CAPS correlations or mean 

FCS effects were found within the PFC. 

The positive correlation effects mapped in Fig. 7 are illustrated in Figure 8. Note that several other 

regions that showed negative correlations in Figs. 5 and 6 exhibited positive correlations between the 

FCS and CAPS, but the corresponding clusters did not survive the whole-brain FWE correction. For 

example, these regions included the right LOFC at (55, 25, −1) (t=5.22, 68 voxels), the left MOFC at 

(−1, 39, −15) (t=3.99, 25 voxels). Furthermore, some regions showed negative correlations between the 

FCS and CAPS, such as the right precuneus/posterior cingulate at (23, −62, 25) (t=−3.71, 39 voxels). 

The correlation effects for these regions are also illustrated in Fig. 8. 

3.5. EEG coherence enhancement 

Figure 9 demonstrates correlations between the EEG coherence slope (ECS) for the upper alpha 
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EEG band across the four rtfMRI-nf runs (Fig. 3C) and CAPS ratings for the EG. The EEG recordings 

were conducted simultaneously with fMRI (Fig. 2D). Data from 18 EG participants were included in the 

ECS vs CAPS correlation analysis, with the same outlier excluded as described above along with a 

second participant whose data were excluded due to excessive EEG-fMRI artifacts. According to Fig. 

9A, the ECS exhibited positive correlations (r(15)>0, p<0.05, uncorr.) with CAPS ratings for many EEG 

channel pairs, particularly those involving frontal and left temporal (T7) EEG channels. (Negative 

correlations, r(15)<0, did not reach the p<0.05 statistical threshold). This correlation effect is illustrated 

in Fig. 9B for one channel pair. Following our previous work (Zotev et al., 2016), we defined average 

ECS for 10 pairs of fronto-temporal EEG channels on the left, ECS(L), and for 10 corresponding 

channel pairs on the right, ECS(R), as detailed in Fig. 9C,D. The ECS(L) demonstrated a significant 

positive correlation with CAPS ratings (Fig. 9C). The average ECS laterality, ECS(L)−ECS(R), showed 

a positive correlation with CAPS that trended toward significance (Fig. 9E). 

4.  Discussion 

This study employed rtfMRI-nf of left amygdala activity while recalling happy autobiographical 

memories to investigate the clinical potential of training veterans with combat-related PTSD to regulate 

amygdala hemodynamic activity. After three rtfMRI-nf training sessions, the EG participants who 

completed the study (n=15) showed a significant reduction in PTSD severity. This reduction was largely 

due to a reduction in avoidance symptoms, with only a moderately significant reduction in hyperarousal 

symptoms and a nonsignificant reduction in reexperiencing symptoms. Remarkably, the reduction in 

comorbid depression severity was even more robust. Previous studies have linked depression to deficient 

approach motivation (e.g., Henriques & Davidson, 2000; McFarland et al., 2006; Trew, 2011). Thus, the 

reduction in depression severity could conceivably be associated with an enhancement in approach 
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motivation (though approach tendencies were not directly assessed in the present study). This reasoning 

suggests that the strongest neuropsychological effects of the rtfMRI-nf training in PTSD veterans may 

occur along the approach-avoidance (motivational) dimension. This would be consistent with a stronger 

engagement of the EF/ER system during the rtfMRI-nf task. 

Among the EG, 80% of the participants who completed the study achieved clinically meaningful 

reductions in PTSD severity (10 CAPS points or more). This symptom improvement rate is higher than 

in veterans with PTSD undergoing cognitive therapies (Steenkamp et al., 2015). It is consistent with 

preliminary work on amygdala rtfMRI-nf, in which two PTSD veterans out of three showed clinically 

meaningful PTSD symptom improvements (Gerin et al., 2016). However, 38% of the participants in the 

CG who completed the study also demonstrated clinically meaningful reductions in PTSD severity, 

despite receiving the sham rtfMRI-nf. This symptom improvement may be attributable to placebo 

effects, as well as to positive effects of regular interactions with the clinical assessment personnel.  

The EG participants who completed the first rtfMRI-nf training session (n=20) were able to 

significantly increase LA BOLD activity during the Happy Memories conditions in Run 3 and in the 

Transfer run. This suggests participants gradually learned to upregulate LA activity as the training 

progressed. Importantly, the LA BOLD activity levels averaged across the three rtfMRI-nf training runs 

(Runs 1-3) were significantly higher for the EG than for the CG. However, the PTSD patients in the EG 

only achieved mean LA activity levels for individual runs in the range from 0.1% to 0.2% (Fig. 4A). 

This is lower than the 0.2% to 0.3% mean LA activity range for MDD patients who followed the same 

protocol in our previous study (Zotev et al., 2016). This suggests that the effects of this neurofeedback 
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protocol may be smaller when completed by people with PTSD and therefore a larger sample is needed 

to reach comparable statistical power (Desmond & Glover, 2002). 

Functional connectivity of the LA during the Happy Memories conditions in the Practice run of the 

first rtfMRI-nf session served as an estimate of the task-specific LA connectivity at the beginning of the 

training. During this run, the participants were exposed to the rtfMRI-nf for the first time and did not yet 

know how to effectively control the rtfMRI-nf signal. The results in Fig. 5 and Table 3 demonstrate 

negative correlations between the LA fMRI connectivity and the initial CAPS ratings for many 

prefrontal regions, including the LOFC (BA 47, 11), MOFC (BA 11), DLPFC (BA 9, 8), VLPFC (BA 

45), medial frontopolar cortex (BA 9), and rACC (BA 24). These results are consistent with the PFC 

hypoactivity pattern previously observed among people with PTSD (e.g., Etkin & Wager, 2007; Lanius 

et al., 2006; Patel et al., 2012). At the same time, the LA connectivity with several brain regions, 

including the right amygdala, the right MD, and the bilateral precuneus (BA 39, 7), exhibited positive, 

though smaller, correlations with the CAPS ratings (Sec. 3.3, Fig. 6). Parietal regions, including the 

precuneus and the inferior parietal lobule, are known to be hyperactive together with the amygdala in 

PTSD (e.g., Etkin & Wager, 2007; Lanius et al., 2006; Patel et al., 2012). Our results suggest that fMRI 

connectivity between the amygdala and regions of the autobiographical memory recall system (MD, 

precuneus) is increased in PTSD not only during recollection of traumatic events, but also during 

retrieval of happy autobiographical memories.  

The main result of the present work is the observation of the significant positive correlations 

between PTSD severity and the LA fMRI connectivity enhancement (FCS) for several PFC regions 

during the rtfMRI-nf training. This positive FCS vs CAPS correlation effect is observed for the left 
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LOFC (BA 47, 11), bilateral DLPFC (BA 9), and left precentral gyrus (BA 4) for the EG (Fig. 7, Table 

4). Positive, though less robust, correlation effects were also observed for the right LOFC (BA 47) and 

the left MOFC (BA 11), as illustrated in Fig. 8. Such positive correlations suggest that the patients with 

more severe PTSD (higher CAPS ratings) showed more positive changes in the LA connectivity with 

these PFC regions as the rtfMRI-nf training progressed. For the right precuneus, the corresponding LA 

connectivity changes were more negative (Fig. 8). Therefore, the results in Figs. 7 and 8 demonstrate 

correction (at least partial) of the LA fMRI connectivity deficiencies specific to PTSD and evident in 

Figs. 5 and 6. Furthermore, the EG participants exhibited a significant mean FCS effect in the left 

DLPFC (BA 9) (Table 4). This effect indicates a significant fMRI connectivity enhancement between 

the LA and the left DLPFC across the rtfMRI-nf runs, independent of the PTSD and depression severity 

(and corresponding to the mean CAPS and HDRS ratings for the EG). This finding is generally 

consistent with the positive group-average fMRI connectivity changes between the amygdala and the 

DL/DMPFC during the rtfMRI-nf task reported by Nicholson and colleagues (2017). 

EEG recordings performed simultaneously with fMRI allowed us to investigate electrophysiological 

correlates of the rtfMRI-nf training. We examined variations in EEG coherence, which is an EEG 

measure of functional connectivity, across the four rtfMRI-nf runs. The average enhancement in upper 

alpha EEG coherence for the fronto-temporal EEG channels on the left, ECS(L), significantly correlated 

with PTSD severity for the EG (Fig. 9C). Note that this positive ECS vs CAPS correlation effect is 

directly related to the positive FCS vs CAPS correlation effect in Fig. 7 and Table 4. Indeed, four out of 

five clusters in Fig. 7 appear within the left PFC. Stronger functional connectivities among these PFC 

regions and the LA likely result in stronger coherences for EEG signals measured above these regions. 
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Importantly, the enhancements in functional connectivity that accompany the rtfMRI-nf training may 

therefore be observable in both fMRI and EEG domains.  

Interestingly, the map of ECS vs CAPS correlation effects in the EEG channel space (Fig. 9A) is 

similar to the map of ECS vs HDRS correlation effects in our recent MDD study (Zotev et al., 2016). 

However, the average ECS laterality, ECS(L)−ECS(R), exhibited a less significant positive correlation 

with the CAPS ratings (Fig. 9E) than the ECS(L) (Fig. 9C). This trend is different from that in our MDD 

study, in which the ECS laterality showed a more significant correlation with the MDD patients’ HDRS 

ratings than the ECS(L) (Zotev et al., 2016). 

The reported study has several limitations. First, the rtfMRI-nf procedure did not include any 

personalized trauma-related content. Second, the study design focused on the correction of aberrant 

emotion regulation in PTSD but did not explicitly target other symptoms of PTSD, such as 

reexperiencing or avoidance. Third, the rtfMRI-nf task involved upregulation of the amygdala activity in 

order to help people learn to control amygdala activity, while the amygdala is usually hyperactive during 

emotional processing in PTSD. Nevertheless, our experimental results suggest people suffering from 

combat-related PTSD can learn to influence amygdala BOLD activity using rtfMRI-nf and doing so may 

have clinical benefits. 

5.  Conclusion 

Our study demonstrated that rtfMRI-nf of amygdala activity to enhance emotion regulation ability 

may be beneficial to veterans with combat-related PTSD. Our fMRI and EEG results independently 

suggest that the rtfMRI-nf training has the potential to correct the amygdala-PFC functional connectivity 

deficiencies specific to PTSD. The most significant PTSD-specific enhancements in fMRI connectivity 
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between the LA and the PFC were observed for the LOFC and DLPFC regions, which are parts of the 

EF/ER system. Because activities of these cortical regions can be probed using EEG, a carefully 

designed EEG-nf procedure may complement the rtfMRI-nf of the amygdala. 
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Table 1. Main characteristics of the experimental and control groups. Numbers of participants who 

started the study (and completed the first rtfMRI-nf session) and those who completed the whole study 

are specified for each group. Mean PTSD and depression severity ratings are also included. 

Abbreviations: CAPS – Clinician-Administered PTSD Scale; PCL-M – PTSD CheckList Military 

Version; HDRS – Hamilton Depression Rating Scale; MADRS – Montgomery-Asberg Depression 

Rating Scale. 

  

 Experimental group (EG) Control group (CG) 

Measure Started 

mean (SD) 

Completed 

mean (SD) 
 Started 

mean (SD) 

Completed 

mean (SD) 
 

Participants 20 15  11 8  

Age 31 (6) 31 (5)  34 (8) 37 (8)  

CAPS 51.3 (13.9) 40.6 (17.9)  57.0 (24.1) 53.8 (22.3)  

PCL-M 44.7 (10.8) 36.3 (11.9)  47.2 (17.8) 40.5 (19.6)  

HDRS 16.8 (5.8) 11.1 (5.5)  14.7 (8.6) 11.1 (5.8)  

MADRS 20.7 (8.9) 13.9 (10.0)  17.1 (12.9) 14.3 (9.4)  

 

 

 



33 

 

Table 2. Changes in PTSD and depression severity ratings for participants who completed the study. 

Mean rating values at the beginning of the study (initial) and at the end of the study (final) are included, 

and their statistical changes (final vs initial) within each group are specified. Abbreviations: CAPS – 

Clinician-Administered PTSD Scale; HDRS – Hamilton Depression Rating Scale.  

 

Rating Initial 

mean (SD) 

Final 

mean (SD) 

Change  

t-score# 

Change 

p-value [q] 

Experimental group (EG, n=15)     

CAPS 54.9 (13.6) 40.6 (17.9) −3.69 0.0024 [0.004]* 

    Reexperiencing symptoms 11.1 (5.8) 9.1 (6.6) −1.56 0.142 [0.142] 

    Avoidance symptoms 21.8 (7.4) 14.0 (9.4) −3.78 0.0020 [0.004]* 

    Hyperarousal symptoms 22.0 (4.7) 17.5 (7.2) −2.54 0.024 [0.030]* 

HDRS 17.3 (6.5) 11.1 (5.5) −4.61 0.0004 [0.002]* 

Control group (CG, n=8)     

CAPS 62.3 (20.9) 53.8 (22.3) −1.75 0.124 [0.207] 

    Reexperiencing symptoms 15.8 (6.3) 13.5 (8.4) −1.41 0.203 [0.254] 

    Avoidance symptoms 24.6 (11.5) 18.0 (13.1) −1.95 0.092 [0.207] 

    Hyperarousal symptoms 21.9 (4.6) 22.3 (4.5) 0.30 0.776 [0.776] 

HDRS 16.8 (8.5) 11.1 (5.8) −2.28 0.056 [0.207] 

# t(14) for the EG, t(7) for the CG. 

* FDR q<0.05 for the five tests. 
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Table 3. Statistical data for the correlation between the fMRI connectivity of the left amygdala during 

the Happy Memories conditions in the Practice run and PTSD severity (CAPS). Location of the point 

with the peak group t-score and the number of voxels are specified for each cluster obtained after FWE 

correction for multiple comparisons.  

 

Region 
Laterality 

x, y, z  

(mm) 
t-score 

Size  

(voxels) 

Frontal Lobe     

Lateral orbitofrontal cortex (BA 47) R 51, 23, −8 −9.50 646 

Dorsolateral prefrontal cortex (BA 9) L −33, 51, 24 −5.45 306 

Lateral orbitofrontal cortex (BA 11) L −31, 41, −11 −6.77 288 

Medial frontal polar cortex (BA 9) R 9, 61, 30 −6.91 252 

Ventrolateral prefrontal cortex (BA 45) L −55, 21, 12 −6.85 188 

Dorsolateral prefrontal cortex (BA 8) R 21, 43, 42 −6.70 181 

Superior frontal gyrus (BA 8) L −7, 31, 48 −5.62 158 

Medial orbitofrontal cortex (BA 11) R 1, 33, −22 −5.55 125 

Medial orbitofrontal cortex (BA 11) R 5, 20, −20 −7.34 84 

Temporal Lobe     

Middle temporal gyrus (BA 21) R 67, −19, −12 −5.98 325 

Middle temporal gyrus (BA 20) R 57, −43, −12 −5.94 92 

Limbic Lobe     

Anterior cingulate cortex (BA 24) R 3, 37, 9 −5.76 127 

Sub-lobar Regions     

Insula (BA 13) L −35, 21, 0 −4.79 144 

Notations:  BA – Brodmann areas;  L – left;  R – right;  x, y, z – Talairach coordinates;   

FWE corrected  p<0.05 (Size – cluster size, minimum 75 voxels for uncorr. p<0.01). 
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Table 4. Statistical data for the correlation between the fMRI connectivity slope (FCS) for the left 

amygdala and PTSD severity (CAPS), as well as for the mean FCS effect. Location of the point with the 

peak group t-score and the number of voxels are specified for each cluster obtained after FWE 

correction for multiple comparisons.  

 

Region 
Laterality 

x, y, z  

(mm) 
t-score  

Size  

(voxels) 

FCS vs CAPS correlation effect     

Lateral orbitofrontal cortex (BA 11) L −23, 47, −12 5.19 219 

Dorsolateral prefrontal cortex (BA 9) R 15, 37, 39 4.65 116 

Dorsolateral prefrontal cortex (BA 9) L −35, 25, 26 5.45 110 

Lateral orbitofrontal cortex (BA 47) L −43, 17, −6 4.69 106   

Precentral gyrus (BA 4)      L −49, −11, 50 5.76 84   

Mean FCS effect     

Dorsolateral prefrontal cortex (BA 9) L −55, 9, 30 4.68 250 

Inferior temporal gyrus (BA 20) L −55, −37, −16 6.35 93 

Superior temporal gyrus (BA 22) R 55, −7, −2 4.64 81 

Notations:  BA – Brodmann areas;  L – left;  R – right;  x, y, z – Talairach coordinates;   

FWE corrected  p<0.025 (Size – cluster size, minimum 81 voxels for uncorr. p<0.01). 
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Figure captions  

  

Figure 1. Overview of the emotion self-regulation study utilizing real-time fMRI neurofeedback 

(rtfMRI-nf) of the amygdala in veterans with combat-related PTSD. A) The study included eight 

sessions (visits) with three rtfMRI-nf training sessions (visits 4, 5, 6) and two PTSD symptom 

assessment (CAPS) sessions (visits 2, 8). B) Experimental protocol for one rtfMRI-nf session. It 

consisted of seven runs, each lasting 8 min 46 s. It included two Rest runs, four rtfMRI-nf runs – 

Practice, Run 1, Run 2, Run 3, and a Transfer run without nf. The names of the seven runs are 

abbreviated in the figures below as RE, PR, R1, R2, R3, TR, and RE, respectively. The experimental 

runs (except the Rest) consisted of 40-s long blocks of Happy Memories, Count, and Rest conditions 

(abbreviated as H, C, and R, respectively). C) Real-time GUI display screens for the Happy Memories, 

Count, and Rest conditions. The rtfMRI-nf signal is displayed during the Happy Memories conditions as 

the variable-height red bar. The red bar height represents real-time fMRI activity of the target ROI and is 

updated every 2 s. The blue bar height specifies a target level for the rtfMRI-nf signal and is raised from 

run to run.  

 

Figure 2. Regions of interest employed in real-time fMRI data processing and offline fMRI data 

analyses. A) Spherical 14-mm diameter target ROI in the left amygdala (LA) region used to provide 

rtfMRI-nf for the experimental group (EG). B) Spherical 14-mm diameter target ROI in the left 

horizontal segment of the intraparietal sulcus (LHIPS) region used to provide sham rtfMRI-nf for the 

control group (CG). C) Left amygdala (LA) and right amygdala (RA) ROIs defined anatomically as the 

amygdala regions specified in the co-planar stereotaxic atlas of the human brain by Talairach and 

Tournoux. These ROIs were used in the offline fMRI data analyses. The ROIs are projected in the figure 

onto the standard TT_N27 template in the Talairach space. Following the radiological notation, the left 

hemisphere (L) is shown to the reader’s right. D) A 32-channel MR-compatible EEG system from Brain 

Products, GmbH was used to perform EEG recordings during fMRI. 

 

Figure 3. Analyses of linear trends in functional connectivity measures across neurofeedback runs. A) 

The target level for the rtfMRI-nf (blue bar in Fig. 1C) was raised in a linear fashion across the four 
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rtfMRI-nf runs (Practice, Run 1, Run 2, Run 3) in each neurofeedback session (Fig. 1B). B) Definition 

of the fMRI connectivity slope (FCS). It is defined, for each fMRI voxel, as a slope of a linear trend in 

fMRI connectivity with the seed ROI across the Happy Memories conditions in the four rtfMRI-nf runs. 

C) Definition of the EEG coherence slope (ECS). It is defined, for each pair of EEG channels, as a slope 

of a linear trend in upper alpha EEG coherence changes between the Rest and Happy Memories 

conditions across the four rtfMRI-nf runs. 

 

Figure 4. BOLD activity of the amygdala during the first rtfMRI-nf session. A) Average fMRI percent 

signal changes for the left amygdala (LA, left) and the right amygdala (RA, right) ROIs for the 

experimental group (EG). Each bar represents a mean GLM-based fMRI percent signal change for the 

corresponding ROI (Fig. 2C) with respect to the Rest baseline for the Happy Memories (H vs R) or 

Count (C vs R) conditions in a given run, averaged across the group. The error bars are standard errors 

of the means (sem) for the group averages. The experimental runs and condition blocks are depicted 

schematically in Fig. 1B. Significance of the H vs R results is specified after FDR correction for testing 

the data for five runs.  B) Corresponding average fMRI percent signal changes for the control group 

(CG). 

 

Figure 5. Statistical maps of the correlation between the fMRI connectivity of the left amygdala (LA) 

during the Happy Memories conditions in the Practice run and PTSD severity (CAPS) for the 

experimental group (EG). The correlation is a voxel-wise partial correlation with CAPS ratings 

controlled for comorbid depression severity (HDRS) ratings and average individual LA connectivity 

with white matter. The maps are FWE corrected and projected onto the standard anatomical template 

TT_N27 in the Talairach space, with 3 mm separation between axial slices. The number adjacent to each 

slice indicates the z coordinate in mm. The left hemisphere (L) is to the reader’s right. The green 

crosshairs mark the center of the LA target ROI (Fig. 2A). Peak t-statistics values for the correlation 

effect and the corresponding cluster properties are specified in Table 3. 

 

Figure 6. Illustration of the correlation effects between the LA fMRI connectivity during the Happy 

Memories conditions in the Practice run and PTSD severity (CAPS) for the EG. Each plot shows an 

average correlation effect for a 10-mm diameter ROI centered at a specified location. The correlation is 
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a partial correlation with CAPS ratings controlled for HDRS ratings and average individual LA 

connectivity with white matter (n=19, df=15). The results for the R LOFC, L LOFC, R MOFC, and L 

DLPFC correspond to those reported in Fig. 5 and Table 3. The results for the R MD and R PCun are 

included to illustrate existence of positive correlations between the LA fMRI connectivity and PTSD 

severity (see text). Abbreviations: LOFC – lateral orbitofrontal cortex, MOFC – medial orbitofrontal 

cortex, DLPFC – dorsolateral prefrontal cortex, MD – mediodorsal nucleus of the thalamus, PCun – 

precuneus. 

 

Figure 7. Statistical maps of the correlation between the fMRI connectivity slope (FCS) for the left 

amygdala (LA) and PTSD severity (CAPS) for the experimental group (EG). The FCS is defined in Fig. 

3B. The correlation is a voxel-wise partial correlation with CAPS ratings controlled for comorbid 

depression severity (HDRS) ratings and average individual LA FCS for white matter. The maps are 

FWE corrected and projected onto the TT_N27 template, with 3 mm separation between axial slices. 

The number adjacent to each slice indicates the z coordinate in mm. The left hemisphere (L) is to the 

reader’s right. The green crosshairs mark the center of the LA target ROI (Fig. 2A). Peak t-statistics 

values for the correlation effect and the corresponding cluster properties are specified in Table 4. 

  

Figure 8. Illustration of the correlation effects between the LA FCS and PTSD severity (CAPS) for the 

EG. Each plot shows an average correlation effect for a 10-mm diameter ROI centered at a specified 

location. The correlation is a partial correlation with CAPS ratings controlled for HDRS ratings and 

average individual LA FCS for white matter (n=19, df=15). The results for the L LOFC (BA 11), L 

LOFC (BA 47), and L DLPFC correspond to those reported in Fig. 7 and Table 4. The results for the R 

LOFC, L MOFC, and R PCun are included for comparison with the corresponding results in Figs. 5,6 

(see text). The abbreviations are the same as in Fig. 6. 

 

Figure 9. Correlation between the EEG coherence slope (ECS) in the upper alpha band and PTSD 

severity (CAPS) for the experimental group (EG). The ECS is defined in Fig. 3C. The correlation for 

each EEG channel pair (or average across multiple channel pairs) is a partial correlation with CAPS 

ratings controlled for comorbid depression severity (HDRS) ratings (n=18, df=15). A) Red segments 

denote EEG channel pairs for which the ECS vs CAPS correlations are positive (r(15)>0, p<0.05, 
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uncorr.). B) Example of such correlation for one channel pair. C) Significant correlation between the 

ECS(L), i.e. the average ECS for 10 pairs of fronto-temporal EEG channels on the left, and CAPS 

ratings. D) Lack of correlation between the ECS(R), i.e. the average ECS for 10 pairs of corresponding 

fronto-temporal EEG channels on the right, and CAPS ratings. E) Correlation between the average ECS 

laterality, ECS(L)−ECS(R), and CAPS ratings. 
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Supplementary Material 

“Real-time fMRI neurofeedback training of the amygdala activity with simultaneous EEG  

in veterans with combat-related PTSD” by V. Zotev et al. 

S1.1.  fMRI data analysis  

Offline analysis of the fMRI data was performed in AFNI [Cox, 1996; Cox & Hyde, 1997]. Pre-processing of 

single-subject fMRI data included despiking using the 3dDespike AFNI program and correction of cardiorespiratory 

artifacts using the AFNI implementation of the RETROICOR method [Glover et al., 2000]. Further fMRI pre-

processing involved slice timing correction and volume registration of all EPI volumes acquired in the experiment 

using the 3dvolreg AFNI program with two-pass registration. The last volume of the short EPI dataset acquired 

immediately after the high-resolution anatomical (MPRAGE) brain image was used as the registration base. 

The fMRI activation analysis was performed using the standard general linear model (GLM) approach. It was 

conducted for each of the five task fMRI runs (Fig. 1B) using the 3dDeconvolve AFNI program. The GLM model 

included two block-design stimulus condition terms, Happy Memories and Count (Fig. 1B), represented by the 

standard block-stimulus regressors in AFNI. A general linear test term was included to compute the Happy vs Count 

contrast. Nuisance covariates included the six fMRI motion parameters and five polynomial terms for modeling the 

baseline. GLM β coefficients were computed for each voxel, and average percent signal changes for Happy vs Rest, 

Count vs Rest, and Happy vs Count contrasts were obtained by dividing the corresponding β values (×100%) by 

the β value for the constant baseline term. The resulting fMRI percent signal change maps for each run were 

transformed to the Talairach space by means of the @auto_tlrc AFNI program using each subject’s high-resolution 

anatomical brain image as the template. 

Average individual BOLD activity levels for the left and right amygdala were computed in the offline analysis 

for the LA and RA ROIs, exhibited in Fig. 2C. The ROIs were defined anatomically as specified in the AFNI 

implementation of the Talairach-Tournoux brain atlas. The voxel-wise fMRI percent signal change data from the 

GLM analysis, transformed to the Talairach space, were averaged within the LA and RA ROIs and used as GLM-

based measures of these regions’ BOLD activities. 

S1.2.  EEG data analysis 

Removal of MR and cardioballistic (CB) artifacts was based on the average artifact subtraction method 

implemented in BrainVision Analyzer 2.1 (Brain Products, GmbH). The MR artifact template was defined using 

MRI slice markers recorded with the EEG data. After the MR artifact removal, the EEG data were bandpass filtered 

between 0.5 and 80 Hz (48 dB/octave) and downsampled to 250 S/s sampling rate (4 ms interval). The fMRI slice 

selection frequency (17 Hz) and its harmonics were removed by band rejection filtering. The CB artifact template 
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was determined from the cardiac waveform recorded by the ECG channel, and the CB artifact to be subtracted was 

defined, for each channel, by a moving average over 21 cardiac periods. Intervals with strong motion artifacts were 

not included in the CB correction.  

Following the MR and CB artifact removal, the EEG data from the five task runs (Fig. 1B) were concatenated 

to form a single dataset. The data were carefully examined, and intervals exhibiting significant motion or 

instrumental artifacts (“bad intervals”) were excluded from the analysis. Channel Cz was selected as a new 

reference, and FCz was restored as a regular channel.  

An independent component analysis (ICA) was performed over the entire dataset with exclusion of the bad 

intervals. This approach ensured that independent components (ICs) corresponding to various artifacts were 

identified and removed in a consistent manner across all five runs. Channels TP9 and TP10 were excluded from the 

ICA and further analysis, because their signals are very sensitive to head and jaw movements, producing large 

artifacts. The Infomax ICA algorithm (Bell & Sejnowski, 1995), implemented in BrainVision Analyzer 2.1, was 

applied to the data from 29 EEG channels and yielded 29 ICs. Time courses, spectra, topographies, and kurtosis 

values of all the ICs were carefully analyzed (see e.g. McMenamin et al., 2010 and supplement therein) to identify 

various artifacts, as well as EEG signals of neuronal origin, with particular attention to the alpha and theta EEG 

bands. After all the ICs had been classified, an inverse ICA transform was applied to remove the identified artifacts 

from the EEG data. Following the ICA-based artifact removal, the EEG data were low-pass filtered at 40 Hz (48 

dB/octave) and down sampled to 125 S/s (8 ms interval). Because many artifacts had been already removed using 

the ICA, the data were examined again, and new bad intervals were defined to exclude remaining artifacts. 
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Abstract 

Self-regulation of brain activation using real-time functional magnetic resonance imaging 

neurofeedback (rtfMRI-nf) is an emerging approach for treating mood and anxiety disorders. However, 

the action mechanism of rtfMRI-nf in symptom improvement remains unclear. The effect of 

neurofeedback training on resting-state functional connectivity warrants investigation as changes in 

spontaneous brain activation could reflect the association between sustained symptom relief and brain 

alteration. In the current study, combat veterans with posttraumatic stress disorder (PTSD) and without 

PTSD were trained to increase a feedback signal reflecting left amygdala activity while recalling 

positive autobiographical memories. Abnormal PTSD connectivity at the baseline session was identified 

by a data-driven, connectome-wide approach using a multivariate distance matrix regression (MDMR) 

analysis that examines comprehensive whole-brain voxel-by-voxel connectivity. The rtfMRI-nf training 

effect on these abnormal connectivities was examined by longitudinal linear mixed-effect model 

analysis. In addition, a longitudinal MDMR analysis was performed to examine connectome-wide 

neurofeedback training effects beyond those associated with effects on abnormal baseline connectivity. 

Results showed significant PTSD symptom reduction in the PTSD group after training, but not in 

the control group that received sham feedback from the horizontal part of the intraparietal sulcus, which 

is not implicated in emotional processing. Abnormal resting-state connectivity for combat veterans with 

and without PTSD was normalized after the training. Those included hypoconnectivities between the left 

amygdala and the left ventrolateral prefrontal cortex (vlPFC) and between the supplementary motor area 

(SMA) and the dorsal anterior cingulate cortex (dACC). The increase of SMA-dACC connectivity was 

associated with PTSD symptom reduction. Longitudinal MDMR analysis revealed a connectivity change 

between the precuneus and the left superior frontal cortex. The increase of this connectivity was 

associated with a decrease in hyperarousal symptoms. 



 3 

These results indicated that the rtfMRI-nf training effect was not limited to a feedback target 

region and symptom relief could be mediated by brain modulation in several regions other than a 

feedback target area. 

 

Keywords: combat veterans, neurofeedback, amygdala, positive memories, prefrontal cortex, precuneus 
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Highlights  

 fMRI neurofeedback training effect on resting-state connectivity was examined 

 Left amygdala activity was trained to increase with positive memory 

 Neurofeedback normalized altered connectivity in veterans with and without PTSD 

 PTSD symptoms reduced significantly after training 

 Connectivity-symptom association was seen in mPFC and precuneus 
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1. Introduction 

Neurofeedback training with real-time functional magnetic resonance imaging (rtfMRI-nf) 

enables self-regulation of brain activation by presenting ongoing brain activation measured with the 

blood oxygenation level dependent (BOLD) signal (Weiskopf, 2012). Emerging evidence suggests 

clinical utility of self-regulation of brain activation with rtfMRI-nf training. deCharms et al. (2005) 

conducted a pioneering study of the clinical application of rtfMRI-nf, which demonstrated that training 

to reduce rostral anterior cingulate cortex (rACC) activity with rtfMRI-nf could reduce chronic pain 

symptoms. Subsequently, studies have applied rtfMRI-nf training to various neurological and 

psychiatric disorders, including chronic tinnitus (Haller et al., 2010), schizophrenia (Ruiz et al., 2011), 

Parkinson's disease (Subramanian et al., 2011), spider phobia (Zilverstand et al., 2015), cigarette 

smoking (Hartwell et al., 2016), borderline personality disorder (Paret et al., 2016a), and mood and 

anxiety disorders (Scheinost et al., 2013), including major depressive disorder (MDD) (Hamilton et al., 

2016; Linden et al., 2012; Young et al., 2017a; Young et al., 2017b; Young et al., 2014; Zotev et al., 

2016) and posttraumatic stress disorder (PTSD) (Gerin et al., 2016; Nicholson et al., 2017). 

These studies demonstrated that participants can learn to self-regulate feedback target regions as 

a result of rtfMRI-nf training. Symptom reduction effects, however, have not been consistent and the 

associations between therapeutic and neurobiological effects are not clear yet. A systematic review of 

neurofeedback treatment studies (Thibault et al., 2016) raised several arguments regarding 

neurofeedback specificity (whether the observed treatment effect is a result of neurofeedback-dependent 

brain modulation or the mental strategy used in the training) and sustainability (how long and how much 

of the trained brain modulation effect on symptom treatment continues after the neurofeedback training). 

They highlighted that several non-specific factors, such as positive expectancies (placebo effect) and 

spontaneous remission, need to be ruled out to confirm therapeutic utility of neurofeedback training 
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(Thibault et al., 2016). Accordingly, more research for possible action mechanisms of the neurofeedback 

brain modulation and how it impacts psychiatric symptoms is necessary. 

Resting-state fMRI functional connectivity (Friston, 1994) has potential for elucidating 

mechanisms underlying rtfMRI-nf therapeutic effects. This measure evaluates correlations among 

BOLD signals during rest. Such spontaneous brain activation could reflect a generalized effect of 

neurofeedback training that is not limited to a trained context and could be associated with sustained 

treatment effects. In fact, the effects of neurofeedback training with fMRI and/or EEG are not limited to 

a training task, but have been observed on resting-state functional connectivity as well (Kluetsch et al., 

2014; Kopel et al., 2016; Nicholson et al., 2016; Scheinost et al., 2013; Yuan et al., 2014). 

Studies also showed that neurofeedback training effects are not restricted to a neurofeedback 

target region. Scheinost et al. (2013) examined the effect of rtfMRI-nf training to reduce orbitofrontal 

cortex (OFC) activity while viewing contamination-associated stimuli among people with contamination 

anxiety. They found changes in connectivity in many brain regions, including reduced connectivity with 

limbic structures and increased connectivity in the dorsolateral prefrontal cortex. Subjective evaluation 

of control over anxiety was negatively correlated with bilateral OFC activation and positively correlated 

with right lateral parietal activation. Emmert et al. (2016) also reported a broad effect of the training in a 

meta-analysis of rtfMRI-nf training studies. These results suggest symptom reduction may be due to 

neurobiological changes beyond a targeted region of neurofeedback. The effect of training, therefore, 

needs to be examined across the whole-brain to elucidate the neurobiological basis of the therapeutic 

effect. 

For whole-brain comprehensive functional connectivity analysis, a connectome-wide association 

approach has been proposed (Shehzad et al., 2014). This approach uses a nonparametric multivariate 

analysis of variance called multivariate distance matrix regression (MDMR). This enables 

comprehensive search in whole-brain voxel-by-voxel connectivity without a priori definition of a seed 
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region (Anderson, 2001). Satterthwaite et al. (2015) used this method to find the resting-state functional 

connectivity that was associated with depression and anxiety symptoms among women with MDD and 

PTSD. They found that decreased connectivities between the amygdala and the dorsolateral prefrontal 

cortex (dlPFC), the ACC, and the anterior insula were correlated with depression symptom severity. 

The current study performed a left amygdala-focused rtfMRI-nf training for combat veterans 

with and without PTSD to investigate the training effects on resting-state functional connectivity and 

how such effects were related to PTSD symptom reduction. Participants were trained to increase the 

feedback signal by recalling positive autobiographical memory. A connectome-wide approach was used 

for comprehensive investigation of the training effect on whole-brain voxel-by-voxel connectivity and 

its association with change in PTSD symptoms. 

Pathological hyperactivity of the amygdala is consistently observed for PTSD patients, both in 

response to negative stimulus presentation (Etkin and Wager, 2007; Fonzo et al., 2010; Hayes et al., 

2012; Patel et al., 2012; Pitman et al., 2012; Rauch et al., 2000; Shin et al., 2006; Simmons et al., 2011; 

St Jacques et al., 2011) and at rest (Koch et al., 2016; Wang et al., 2016). Gerin et al. (2016) and 

Nicholson et al. (2017) performed amygdala-focused rtfMRI-nf training among people with PTSD to 

suppress amygdala activity. In contrast, participants in the current study were trained to increase 

amygdala activity using positive autobiographical memory recall. A meta-analysis (Lindquist et al., 

2016) demonstrated that the amygdala response is valence-general; it responds to both positive and 

negative stimulus presentations. Basic, animal research (Kim et al., 2017) has documented that distinct 

populations of central amygdala neurons mediate mouse appetitive behaviors. In fact, our previous study 

using the same rtfMRI-nf training approach to enhance amygdala response to positive memory recall 

among people with MDD (Young et al., 2017b) demonstrated symptom reduction resulting from the 

procedure. These results suggest that enhancing positive emotion by increasing amygdala activity has 

potential for reducing PTSD symptoms. 
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This report focused on changes in resting-state functional connectivity resulting from the rtfMRI-

nf training among combat veterans with and without PTSD. Brain activation during the training sessions 

will be reported separately. We hypothesized that the rtfMRI-nf amygdala positive emotional training 

will restore and normalize at least some of observed and reported aberrant resting state functional 

connetivities in PTSD. A series of analyses were done for the resting-state functional connectivity at the 

baseline and post-training sessions. First, we analyzed connectivity with the left amygdala region of 

interest (ROI), which was the feedback target region, and demonstrated abnormal connectivity at 

baseline. Then changes in abnormal connectivity resulting from the training, as well as its association 

with symptom change, were examined. A whole-brain search for training effects on left amygdala 

connectivity was also performed. Second, training effects on abnormal connectivity that were identified 

in the previous connectome-wide analysis (Misaki et al., under review) and their associations with 

symptom change were examined. Finally, a connectome-wide training effect analysis was conducted to 

identify the effect outside of abnormal connectivity. For this analysis, we developed a longitudinal 

MDMR that enabled comprehensive examination of training effects and associations with symptom 

change in whole brain voxel-by-voxel connectivity. 

2. Materials and methods 

2.1. Participants 

Forty male U.S. military combat veterans with PTSD, 21 male U.S. military combat veterans 

without PTSD (veteran control, VC), and 28 non-trauma-exposed male controls (NC) participated in the 

baseline resting-state fMRI scan session. See supplementary material “Veteran participants” section for 

details regarding recruitment and inclusion/exclusion criteria. NC subjects were sampled from male 

participants in another study (Misaki et al., 2016) and were matched to the veteran group in terms of age 

and head motion during scanning sessions. 
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RtfMRI-nf training was performed only for veteran participants. Thirty PTSD and 17 VC 

participants completed 3 sessions of rtfMRI-nf training and the post-training resting-state scan session. 

PTSD participants were randomly assigned to the experimental group (PTSD-exp) where they received 

left amygdala rtfMRI-nf (N=21) or to the control group (PTSD-ctrl) where they received rtfMRI-nf from 

the left horizontal segment of the intraparietal sulcus (N=9). All VC participants were in the 

experimental group (VC-exp). Participants with excessive head motion (more than 40 censored volumes, 

see fMRI data processing section below for details) were excluded from the analysis. Five PTSD and 

three VC participants in the baseline session and an additional three PTSD and three VC participants 

who completed the post-training-session were excluded from the analysis. One VC participant did not 

complete the last neurofeedback session but performed the post-training resting-state scan. This 

participant was included in the analysis because the training effect on resting-state functional 

connectivity for this participant was not significantly different from others. Table 1 shows the number of 

participants analyzed in the baseline and the post-training session, respectively, with means and standard 

deviations of age and head motion estimates during the resting-state scan. Motion size is a mean L2-

norm of frame-wise displacement evaluated at realignment procedure in the fMRI image preprocessing. 

There were no significant differences in age (Baseline: F(2,78)=1.388, p=0.256, Post-training: 

F(2,30)=1.791, p=0.184) and motion (Baseline: F(2,78)=1.292, p=0.281, Post-training: F(2,30)=0.404, 

p=0.671) between groups in either session. 
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Table 1. Participant demographics 

 Baseline Post-training 

 N Age Motion  N Age Motion 

PTSD 35 327 0.0610.026 
exp 

ctrl 

16 

6 

306 

319 

0.0520.027 

0.0620.033 

VC 18 3310 0.0650.024 exp 11 361 0.0510.022 

NC 28 2911 0.0550.017     

 

2.2. RtfMRI-nf training schedule 

Veteran groups participated in 7-days of rtfMRI-nf training sessions. Details of the training 

schedule at each visit are provided in the “Schedules of real-time fMRI neurofeedback (rtfMRI-nf) 

training” section of the supplementary material. Resting-state scans at the 2nd and 6th visits were 

analyzed as the baseline and the post-training scans in the current report. No rtfMRI-nf training was 

performed at these visits and the resting-state scan was performed before any other task runs to avoid 

contamination from another task. The mean interval between the last training session (Visit 5) and the 

post-training resting-state scan (Visit 6) was 11 days (SD=6 days). The mean interval between the last 

training session (Visit 5) and the follow-up assessment (Visit 7) was 15 days (SD=7 days). 

The rtfMRI-nf training was performed at the 3rd, 4th, and 5th visits. In the training session, 

subjects were asked to increase the neurofeedback signal by recalling positive autobiographical 

memories. The feedback signal was extracted from the left amygdala for the experimental group and 

from the left horizontal segment of the intraparietal sulcus for the control group. Participants were 

instructed to retrieve positive memories while attempting to increase the feedback signal presented on a 

screen via a bar. Each neurofeedback run consisted of alternating 40s blocks of rest, feedback (happy 

memory retrieval), and count (backward from 300 by a given one-digit integer) conditions. Each 

rtfMRI-nf session consisted of four fMRI runs, each lasting 8min 46s; a practice run, three training runs, 

and a final transfer run in which no neurofeedback information was provided. Further details of the 
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experimental procedures were described previously (Bodurka and Bandettini, 2008; Zotev et al., 2011) 

and in the “Visits 3–5: Real-Time fMRI Neurofeedback Training” section of the supplementary material. 

The Clinician-Administered PTSD Scale (CAPS) for DSM-IV (Blake et al., 1995) and the PTSD 

Checklist - Military Version (PCL-M) (Weathers et al., 1993) were used to identify PTSD diagnosis and 

to measure symptom levels. The CAPS is considered a gold standard for diagnosing PTSD (Blake et al., 

1995; Weathers et al., 2001) and yields symptom severity scores for each of the PTSD symptom clusters, 

including criterion B (reexperiencing), criterion C (avoidance), and criterion D (hyperarousal) symptoms. 

The CAPS was administered at the first and the last visits by a research staff member trained to mastery 

in administration of the interview. The PCL-M was administered at the 2nd and 6th visits. Depression 

and anxiety symptoms were also measured at the 2nd and 6th visits by the Montgomery-Åsberg 

Depression Rating Scale (MADRS) (Montgomery and Åsberg, 1979) and the Hamilton Anxiety Scale 

(HAM-A) (Hamilton et al., 1976), respectively. 

2.3. MRI measurement 

Data from resting-state sessions completed at the 2nd and 6th visits were analyzed as the 

baseline and post-training sessions, respectively. During resting-state fMRI scans, participants were 

instructed not to move and to relax and rest while looking at a fixation cross on a screen in the scanner. 

Magnetic resonance imaging was conducted on a 3 tesla MR750 MRI scanner (GE Healthcare, 

Milwaukee, WI) equipped with 32-channel receive-only head array coils (GE Healthcare, Nova Medical, 

Wilmington, MA). A single-shot gradient-recalled echo-planner imaging (EPI) sequence with sensitivity 

encoding (SENSE) was used for fMRI with imaging parameters of TR=2000ms, TE=30ms, FA=90°, 

FOV=240mm, 34 axial slices with 2.9mm thickness with 0.5mm gap, matrix=96×96, SENSE 

acceleration factor R=2. The EPI images were reconstructed into a 128×128 matrix resulting 

1.875×1.875×3.4mm
3
 voxel volume. The resting fMRI run time was 6min 50s (205 volumes). 

Physiological pulse oximetry and respiration waveforms were simultaneously recorded (40Hz). A 
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photoplethysmograph with an infrared emitter placed under the pad of a participant’s finger was used for 

pulse oximetry, and a pneumatic respiration belt was used for respiration measurements. 

T1-weighted MRI images were acquired for anatomical reference with magnetization-prepared 

rapid gradient-echo (MPRAGE) sequence (FOV=240×192mm, matrix=256×256, 120 axial slices, slice 

thickness=0.9mm, 0.9375×0.9375×0.9mm
3
 voxel volume, TR=5ms, TE=2.0ms, R=2, flip angle=8°, 

delay time=1400ms, inversion time=725ms, sampling bandwidth=31.2kHz, scan time=5min 40s). 

2.4. MRI image processing 

The same image processing procedure as in Misaki et al. (under review) was used. Here is the 

reproduction of its description. Analysis of Functional NeuroImages (AFNI) software 

(http://afni.nimh.nih.gov/afni/) was used for image processing. The afni_proc.py command was used to 

make a data processing script. Initial five volumes were excluded from analysis. Outlier time points 

were replaced with interpolation (despike). RETROICOR (Glover et al., 2000) and respiration volume 

per time (RVT) correction (Birn et al., 2008) were applied to remove cardiac- and respiration-induced 

noise in the BOLD signal. Slice-timing differences were corrected by aligning to the first slice. Motion 

correction was applied by aligning all functional volumes to the first volume. Nonlinear warping to the 

MNI template brain with resampling to 2mm
3
 voxels was done with the Advanced Normalization Tools 

(ANTs) software (Avants et al., 2008) (http://stnava.github.io/ANTs/). We used the non-linearly aligned 

and averaged MNI152 brain provided with the FSL package (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) as a 

template. Spatial smoothing (4mm FWHM) and scaling to percent change were applied to the data. 

Further noise reduction was applied by regressing out three principal components of the ventricle 

signal, local white matter average signal (ANATICOR) (Jo et al., 2010), 12 motion parameters (3 shift 

and 3 rotation parameters with their temporal derivatives), and low-frequency fluctuation (3rd-order 

Legendre polynomial model) from the signal time course. White matter and ventricle masks were 

extracted using FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/) from the anatomical image of 
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individual subject and then warped to the normalized fMRI image space. Any fMRI time point with 

large motion (more than 0.25mm frame-wise displacement (FD)) along with the following point was 

censored within the regression (Power et al., 2015). FD was calculated by the L2-norm of frame-wise 

displacement that was evaluated at the realignment for motion correction. 

2.5. Amygdala ROI analysis 

Left amygdala (LA) region of interest (ROI) was anatomically defined using the Jülich 

histological atlas on MNI template brain (Eickhoff et al., 2005) provided with the FSL package. Voxels 

with larger than 50% probability of the left amygdala region were extracted. The first principal 

component of voxel’s resting-state signal time-course was used as a seed time-course. The sign of the 

principal component signal was adjusted to make its correlation with the mean signal to be positive. The 

signal was extracted from a fully processed image (after regressing out noise components). Pearson’s 

correlations between the seed time-course and time-courses in all other brain voxels were calculated and 

applied Fisher’s z-transform (z = arctanh(r), where r is correlation coefficient) to make a connectivity 

map. This map was subject to the following group analyses. 

The baseline abnormality of the LA connectivity was examined by linear model analysis with 

group (PTSD, VC, NC), age, and motion size as predictor variables. The statistical parametric map for 

the group contrast was thresholded by p<0.005 voxel-wise and family-wise error correction by cluster-

extent p<0.016 (=0.05/3 for Bonferroni correction of three group comparisons). A cluster-extent 

threshold was evaluated by permutation test with 10,000 repetitions (Eklund et al., 2016). 

The rtfMRI-nf training effect was examined by linear mixed-effect (LME) model analysis for 

longitudinal design. The LME model included fixed effects of session (baseline, post-training), group 

(PTSD-exp, PTSD-ctrl, VC-exp), session by group interaction, age, and motion size and a random effect 

of the subject on intercept. The LME analysis was performed with R language and environment for 

statistical computing (R Core Team, 2017) with nlme package (Pinheiro et al., 2017). This analysis was 
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done for the abnormal connectivity identified in the baseline analysis. Post-hoc test of LME to test the 

session effect in each group was done with Dunnett’s multiple comparison method using critical values 

from multivariate t-distribution with lsmeans package in R (Lenth, 2016). This multiple comparison 

method was used for all post-hoc tests of LME in this study and all reported p-values for the post-hoc 

test of LME were corrected. 

The training effect on left amygdala connectivity was also examined in whole-brain voxels. The 

LME analysis was performed for all connectivities between the left amygdala and whole-brain voxels. 

The statistical parametric maps for the main effect of session and the interaction between session and 

group was thresholded by p<0.005 voxel-wise and family-wise error correction by cluster-extent p<0.05. 

Since permutation test for the LME analysis was computationally too expensive, we used an improved 

cluster-size simulation with 3dClustSim in AFNI (Cox et al., 2017). The new approach used an 

improved spatial autocorrelation function to simulate the null distribution of cluster size that remedies 

the false positive problem (Cox et al., 2017). We also examined an LME model with additional 

regressors of symptom change and its interaction with session and group as fixed effects to search for an 

LA connectivity change that was associated with symptom change. The analysis for symptom 

association was done separately for each symptom measure only with the PTSD groups. 

 

2.6. MDMR analysis for baseline abnormality 

Misaki et al. (under review) performed MDMR analysis to investigate comprehensive voxel-wise 

resting-state connectivity alteration between the PTSD, VC, and NC groups. The current study used the 

same data as the baseline and examined changes in these abnormal connectivities as a result of the 

rtfMRI-nf training. The analysis procedure was described in Misaki et al. (under review) in detail and it 

is reproduced in the supplementary material, "Baseline MDMR analysis to identify abnormal resting-

state functional connectivity" section. This analysis identified connectivity alterations in the PTSD and 
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VC groups compared to NC. The same LME models as in the LA ROI analysis were used to examine 

the training effect on these altered connectivities. 

 

2.7. Longitudinal MDMR for the connectome-wide training effect 

A longitudinal MDMR analysis was performed for a comprehensive investigation of the training 

effect that was not limited to the abnormal connectivity at baseline. The longitudinal MDMR included 

the connectivity maps before and after the training for each subject. The distance matrix of these maps 

was the dependent variable in the MDMR. The design matrix was made following a longitudinal design 

example in Winkler et al. (2014) (example 6 in the appendix of Winkler et al. (2014)). This design 

matrix included session, group (PTSD-exp, PTSD-ctrl, VC-exp), session by group interaction, age, and 

motion size. In addition, a subject-wise factor variables were included in the design matrix. These 

regressors had 1 at a pair of a same subject’s samples and 0 for the others. This could regress out 

subject-wise average effect, so that the longitudinal analysis could find the session and the group effect 

on within-subject connectivity difference. Exchangeability block of permutation test in the MDMR was 

defined for each subject. That is, permutation was performed within a subject to randomize session order 

and then subject blocks were randomly permuted. 

We found this design matrix was rank-deficient due to collinearity between the subject-wise 

regressors and age and motion regressors, which made the MDMR estimation unstable. We solved this 

problem by orthogonalizing the design matrix using singular value decomposition (SVD) (Mandel, 

1982). The design matrix was decomposed to        using SVD.    is a transpose of  . MDMR 

analysis can be described as              , where   is a centered negative distance matrix 

(G = CAC, where      
 

 
    ,     

 

 
   

  , n is the number of subjects, I is the n×n identity 

matrix and 1 is a vector of n 1s (Shehzad et al., 2014)) and       . This transformation improved the 

stability of the analysis because columns of U are orthogonal to each other. Pseudo-F value can be 
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evaluated by   
            

                
, where      . MDMR evaluates an individual effect of regressor 

using a partial design matrix,   , which is a design matrix excluding effects of interest columns. 

Pseudo-F value of the effect of interest is obtained by    
          

                
, where        , 

       
 ,       

         , and mI is the number of effects of interest regressors. We note that 

this procedure with SVD is equivalent to the original MDMR when the design matrix X is full-rank. 

The processed resting-state fMRI image was down-sampled to 4mm
3
 voxels to apply 

longitudinal MDMR. Significance of the pseudo-F value was evaluated by permutation test with 10,000 

repeats and thresholded by p<0.005 voxel-wise and family-wise error correction by cluster-extent 

p<0.05. Cluster-extent threshold was evaluated by permutation test. The regions with a significant main 

effect of interest (sum of the effects of session, group, and the session by group interaction) in the 

MDMR were used as seed regions for post-hoc connectivity analysis. 

A seed-based post-hoc analysis for the significant regions with the MDMR was done in the 

original resolution images. Seed regions were placed at a peak location of the significant cluster in the 

MDMR statistical map for the main effect of interest. Peak coordinates in each significant cluster 

separated by at least 30mm were extracted. Seed area was a 6mm-radius sphere centered at the peak 

coordinates of the MDMR statistical map. Mean signal time-course of the seed area was used as a 

reference signal to calculate correlations with other voxels. The statistical test of the post-hoc analysis 

was the same as in the LA ROI analysis using LME and 3dClustSim. We also performed a longitudinal 

MDMR analysis with additional regressors of symptom change and its interaction with session and 

group to examine an association between connectivity change and symptom change. The analysis for 

symptom association was done separately for each symptom measure only with the PTSD groups. 
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3. Results 

3.1. Symptom measure 

Table 2 shows symptom levels at the baseline and the post-training sessions for the veterans 

listed in Table 1. Post-training CAPS scores were not available for five PTSD-exp, one PTSD-ctrl, and 

one VC participants. LME longitudinal analysis showed a significant main effect of session on CAPS 

total scores (p=0.004 with Wald tests (Pinheiro et al., 2017)), CAPS Criterion C subscale (sub-C; 

p=0.020), CAPS Criterion D subscale (sub-D; p=0.004), PCL-M total symptom scores (p=0.005), 

MADRS (p=0.012), and HAM-A (p=0.005). Post-hoc analysis of session effects for each group 

indicated that significant symptom reduction was seen only for the PTSD-exp group in all measures 

except CAPS Criterion B subscale scores (reexperiencing symptoms). 

 

Table 2: Symptom measures at baseline and post-training sessions 

 Baseline  Post-training 

 PTSD VC  PTSD-exp PTSD-ctrl VC-exp 

CAPS (total) 55.218.4 4.84.9  38.219.8*** 50.830.1 2.02.3 

CAPS (sub-B) 13.27.1 0.20.8  7.56.1 11.210.3 0.20.6 

CAPS (sub-C) 20.19.6 0.82.2  14.711.0** 17.618.1 0.81.7 

CAPS (sub-D) 21.95.3 3.93.9  15.97.6** 22.06.0 1.02.2 

PCL-M 48.014.2 19.62.6  36.012.8* 45.023.5 18.11.4 

MADRS 20.49.6 1.41.8  12.88.4** 14.09.7 0.71.0 

HAM-A 18.27.8 1.91.5  10.46.0** 14.56.7 1.11.4 

Means and standard deviations of symptom measures at the baseline and the post-training sessions. 

CAPS: Clinician-Administered PTSD Scale; CAPS (sub-B): CAPS Criterion B subscale, re-

experiencing symptoms; CAPS (sub-C): CAPS Criterion C subscale, avoidance and numbing symptoms; 

CAPS (sub-D): CAPS Criterion D subscale, hyperarousal symptoms; PCL-M: MADRS: Montgomery-

Åsberg Depression Scale; HAM-A: Hamilton Anxiety Rating Scale. * (p<0.05), ** (p<0.005), and *** 

(p<0.001) indicate corrected p-values of symptom change between the baseline and the post-training 

sessions. 
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3.2. Left amygdala connectivity 

The PTSD group had significantly lower connectivity between the left amygdala and the left 

ventrolateral prefrontal cortex (vlPFC) than the NC group at baseline (Fig. 1). This connectivity was 

significantly increased after the training only for the PTSD-exp group (Fig. 1). Longitudinal LME 

analysis with a post-hoc test of the mean connectivity between the left amygdala seed and the voxels in 

the cluster of significantly altered connectivity showed a significant effect of session only for the PTSD-

exp group (t(29)=2.554, corrected p=0.047). This connectivity change, however, was not significantly 

associated with symptom change. A whole-brain analysis for left amygdala connectivity with or without 

an effect of symptom change found no connectivity that was significantly associated with session and 

symptom change. 

 

 

Figure 1. The region with significantly lower functional connectivity from the left amygdala ROI 

at the baseline session and its change between the sessions. Graphs show the group means and its 

95% confidence intervals. Connectivity values are z-transformed correlation coefficients residualized 

with regard to age and motion. 
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3.3. Training effects on abnormal resting-state functional connectivity 

Misaki et al. (under review) reported altered resting-state functional connectivities for the PTSD 

and VC groups compared to the NC group using a connectome-wide analysis. Supplementary tables S2 

and S3 show lists of those altered connectivities. Here we investigated change in these abnormal 

connectivities after the neurofeedback training. 

Figure 2A shows connectivity that had been altered in the PTSD group at baseline and changed 

significantly after training. Connectivity between the supplementary motor area (SMA) and the dorsal 

anterior cingulate cortex (dACC) was significantly lower in the PTSD group compared to the NC group 

at baseline. This connectivity was significantly increased after training only for the PTSD-exp group. 

Longitudinal LME analysis with a post-hoc test for the mean connectivity between the seed (SMA) and 

the voxels in the altered connectivity cluster showed a significant effect of session only for the PTSD-

exp group (t(29)=2.770, corrected p=0.028), and this connectivity increase was significantly associated 

with a decrease of PCL-M in the PTSD-exp group (Fig. 2B, t(15)=-3.092, corrected p=0.007). 
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Figure 2. Training effect on abnormal connectivity for PTSD. A. Upper panels show seed location 

identified with MDMR (upper left) and abnormal connectivity region found in a post-hoc analysis of 

PTSD–NC contrast (upper right). Lower panels show mean connectivity between the seed and the 

voxels in the cluster of significantly altered connectivity at the baseline. The connectivity value was a z-

transformed correlation with regressing out age and motion effects. Error bars show 95% confidence 

interval of the mean value. B. Association between the PCL-M score change and the connectivity 

change for PTSD participants are shown with fitted lines. Shadow around the line indicates the 95% 

confidence intervals of a fitted line. The connectivity change is the change in z-transformed correlations 

with regressing out age and motion effects. 

 

Figure 3 shows connectivity that had been altered for the VC group at baseline and significantly 

changed after training. Connectivity between the left superior frontal region and the precuneus and the 

supramarginal gyrus was significantly lower for the VC group compared to the NC group at baseline 
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(Fig. 3A). This connectivity was significantly increased after training only for the VC-exp group. 

Longitudinal LME analysis with a post-hoc test for the mean connectivity between the seed (left 

superior frontal region) and the voxels in the cluster of significantly altered connectivity showed a 

significant effect of session only for the VC-exp group (t(29)=3.518, corrected p=0.004). The bilateral 

insula regions showed hyperconnectivity with several brain areas (see supplementary table S3 for 

details) at the baseline session (Fig. 3B, 3C). These connectivities were significantly decreased after 

training for the VC-exp group. Longitudinal LME analysis with a post-hoc test for the mean 

connectivity between the seed and the voxels in the clusters of significantly altered connectivity showed 

a significant effect of session for the VC-exp group (t(29)=-3.990, corrected p=0.001 and t(29)=-3.485, 

corrected p=0.005 for the left and right insula seed, respectively). The PTSD-ctrl group also showed a 

significant decrease of left insula connectivity after training (t(29)=-3.156, corrected p=0.011). Fig. 3B 

indicated that the PTSD-ctrl group had hyperconnectivity in the left insula at baseline that was similar to 

the VC group. For the PTSD-ctrl group, the decrease in this connectivity was associated with a decrease 

in CAP sub-D (hyperarousal) symptoms (Fig. 3B, t(10)=2.754, corrected p=0.020). 
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Figure 3: Training effect on abnormal connectivity for VC. For each panel A, B, and C, seed 

location (upper left) was identified with MDMR analysis and altered connectivity region (upper right) 

found in a post-hoc analysis of VC–NC contrast. Bar and line plots show mean connectivity between the 

seed and the voxels in the cluster of significantly altered connectivity at baseline. The connectivity value 

was a z-transformed correlation with regressing out age and motion effects. Error bars show the 95% 

confidence interval of the mean value. 
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3.4. Longitudinal MDMR for connectome-wide training effect 

No significant effect of session or interaction between session and group was observed in the 

longitudinal MDMR analysis when no symptom change was included in the model. When the change in 

CAPS sub-D (hyperarousal) scores was included in the analysis, longitudinal MDMR found a significant 

cluster in the right precuneus region for the sum of effect of interest (Fig. 4). 

 

 

Figure 4: Training effect on resting-state functional connectivity identified with longitudinal 

MDMR. Upper panels show seed location (upper left) identified with longitudinal MDMR and 

abnormal connectivity region (upper right) found in a post-hoc LME analysis for the interaction between 

the CAPS sub-D score change and the session. The bottom left panel shows mean connectivity between 

the seed and the voxels in a significant cluster. The connectivity value was z-transformed correlation 

with regressing out age and motion effects. Error bars show 95% confidence interval of the mean value. 

The bottom right panel shows the association between the CAPS sub-D change and the connectivity 

change for PTSD participants. The shadow around the line indicates the 95% confidence interval of a 

fitted line. The connectivity change is the difference in the z-transformed correlations with regressing 

out age and motion effects. 

The post-hoc LME analysis for the functional connectivity from this region revealed a significant 

interaction between session and CAPS sub-D score change in the connectivity between the precuneus 

and the left superior frontal region (Fig. 4). The increase in this connectivity was significantly associated 
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with a decrease in CAPS sub-D (hyperarousal) symptoms for the PTSD-exp group (t(10)=-4.192, 

p=0.002). The PTSD-ctrl group showed a similar trend, but the association was not statistically 

significant (t(10)=-2.015, p=0.072). 

 

4. Discussion 

RtfMRI-nf training for increasing left amygdala activity by recalling positive autobiographical 

memory reduced PTSD symptoms as well as depression and anxiety symptoms among veterans with 

combat-related PTSD. Comprehensive investigation of training effects on resting-state functional 

connectivity revealed that changes in connectivity were observed both in left amygdala connectivity as 

well as in the SMA, ACC, insula, precuneus, and prefrontal regions. These changes were in the direction 

of normalizing abnormal connectivity. Connectivity increases between the SMA and the dACC and 

between the precuneus and the left superior frontal gyrus were associated with a decrease in PTSD 

symptoms measured by PCL-M and CAPS sub-D, respectively. 

The PTSD group evidenced hypoconnectivity between the left amygdala and the vlPFC region 

compared to the NC group at baseline. Amygdala hyperactivity both at rest (Koch et al., 2016; Wang et 

al., 2016; Yan et al., 2013) and during negative emotion-inducing tasks (Etkin and Wager, 2007; Fonzo 

et al., 2010; Hayes et al., 2012; Patel et al., 2012; Pitman et al., 2012; Rauch et al., 2000; Shin et al., 

2006; Simmons et al., 2011; St Jacques et al., 2011) has been consistently reported for PTSD. This 

hyperactivity suggests failure of emotion regulation that could be instantiated by hypoconnectivity 

between the amygdala and the prefrontal emotion-regulation regions, including the ventromedial PFC 

(vmPFC) (Hayes et al., 2012; Patel et al., 2012) and medial prefrontal cortex (mPFC) (Jin et al., 2014). 

Brown et al. (2014) also reported decreased resting-state functional connectivity between the right 

basolateral amygdala (BLA) complex and the left inferior frontal gyrus for PTSD compared to trauma-

exposed controls. The vlPFC has been linked to emotion regulation in many studies (Buhle et al., 2014; 
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Frank et al., 2014; Kohn et al., 2014; Ochsner and Gross, 2005; Zilverstand et al., 2017). Taken together, 

the hypoconnectivity between the amygdala and the vlPFC was consistent with prior research suggesting 

dysfunction of emotion regulation in PTSD related to deficient prefrontal activity and its 

hypoconnectivity with the amygdala. Recovery of this connectivity after training suggests that such 

emotion regulation functioning could be improved by amygdala-focused neurofeedback training of 

positive emotion up-regulation. 

This connectivity change may be more pronounced in emotion enhancement training rather than 

emotion suppression training. Ellard et al. (2017) indicated that amygdala-vlPFC connectivity was 

increased during emotion acceptance and decreased during emotion suppression among people with 

anxiety disorders. Fonzo et al. (2017) investigated a difference between responders and non-responders 

to exposure therapy for PTSD in baseline brain response to emotion reactivity and emotion reappraisal 

tasks. They found that treatment response was associated with high brain activation during an emotion-

reactivity task but not associated with an emotion-reappraisal task. This suggests that the treatment 

effect was not mediated by a reappraisal of emotion, but by accepting and habituating to emotion. Our 

approach that trained subjects to enhance positive emotion did not involve efforts to suppress emotion 

and, indeed, significant symptom reduction was observed. Taken together, these results suggest that 

neurofeedback procedures that involve emotion enhancement might be more effective for PTSD 

treatment than those that involve emotion suppression training. 

While connectivity of the left amygdala was normalized by the training, this change was not 

associated with PTSD symptom change. The connectivity change that was associated with symptom 

relief was seen in the connectivity between the SMA and the dACC. The increase in this connectivity 

was significantly correlated with a decrease in PCL-M scores. SMA and premotor regions have been 

consistently implicated as central nodes of the emotion regulatory network (Buhle et al., 2014; Frank et 

al., 2014; Kohn et al., 2014). Etkin et al. (2011) suggested that the dorsal-caudal part of the ACC and 
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medial PFC are involved in both expression and reappraisal of negative emotion. Bonini et al. (2014) 

used intracerebral electroencephalography to investigate SMA function in an action monitoring task. 

They indicated that SMA is a center of performance monitoring that detects errors in action and sends 

signals to other mPFC and ACC regions to drive action correction. Ellard et al. (2017) also showed that 

dACC activation was increased during emotion acceptance. Taken together, the lowered connectivity 

between the SMA and dACC at baseline for PTSD might be associated with a deficit in emotion 

representation and emotion monitoring. Its recovery resulting from training could be associated with 

normalization of this function. The current training approach, which encourages subjects to repeatedly 

recall memories that elicit positive emotion, may normalize neurobiological mechanisms involved in 

emotion representation. 

Another connectivity change that was associated with symptom relief was between the precuneus 

and the left superior frontal gyrus. The increase in this connectivity was associated with the decrease in 

CAPS sub-D scores (hyperarousal symptoms). This association was discovered in the longitudinal 

MDMR analysis and no significant abnormality was found at baseline. The precuneus has been 

implicated in memory retrieval (Brewin et al., 2010). A meta-analysis (Ochsner et al., 2012) indicated 

consistent left superior frontal activity in emotion regulation tasks. The increase of this connectivity, 

therefore, might be due to repetitive positive memory retrieval during the training. Interestingly, the 

increase in this connectivity was associated with a decrease in PTSD symptoms, while previous studies 

indicated abnormal hyperactivity in the precuneus among people with PTSD (Etkin and Wager, 2007; 

Lanius et al., 2006; Morey et al., 2008; Patel et al., 2012; Rabellino et al., 2015). Cwik et al. (2016) 

reported a positive correlation between the precuneus response to trauma-related pictures and 

subsequent PTSD symptom severity in acute stress disorder patients. Also, paroxetine treatment for 

PTSD has been shown to decrease resting-state amplitude of low-frequency fluctuation in the precuneus 

(Zhu et al., 2015). Collectively, these results suggest that elevated precuneus activity in PTSD is a 
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pathological brain alteration. Although the increase of connectivity between the precuneus and the 

superior frontal region could potentially enhance precuneus activity, this connectivity change was not 

associated with symptom increases, but rather decreases. This increase in connectivity might be 

associated with better control of precuneus activity or the pathological hyperactivity of the precuneus 

was specific to negative memory so that connectivity enhancement with positive memory retrieval may 

not have enhanced the abnormal activity. 

The increase of precuneus connectivity after the training was also observed for the VC group. 

The VC group showed hypoconnectivity in the precuneus at baseline (Misaki et al., under review). It has 

been suggested that decreased precuneus activation is associated with efforts to terminate self-reflection 

of aversive sensations (Vogt and Laureys, 2005; Whalley et al., 2013). The decreased connectivity in the 

precuneus for the VC group, therefore, could be adaptive in that it promotes healthy recovery by 

effectively suppressing retrieval of traumatic memories. The recovery of this connectivity might be 

considered a side effect of repetitive memory retrieval training. Importantly, however, no symptom 

change was seen for the VC group after the training. This also suggests that the increase of the 

precuneus connectivity did not enhance pathological activation. 

Connectivity normalization for the VC group was also seen in the bilateral insula regions. The 

VC group had hyperconnectivity in these regions at baseline that was normalized after the training. 

These insula regions were more posterior areas than the anterior insula, which has been consistently 

reported as hyperactive among people with PTSD (Pitman et al., 2012; Wang et al., 2016; Whalley et al., 

2013). While the mid-to-posterior insula is a region implicated in proprioceptive sensation (Craig, 2003; 

Menon and Uddin, 2010), its abnormality among people with PTSD has also been reported. Tursich et al. 

(2015) showed that connectivity between the posterior insula and the salience network was negatively 

correlated with PTSD hyperarousal symptom severity. Zhang et al. (2016) reported decreased 

connectivity between the right posterior insula and the left inferior parietal lobe and the postcentral 
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gyrus in PTSD. The VC group had increased insula connectivity that was opposite to this abnormality in 

PTSD so that this connectivity alteration in the VC group might be considered an adaptive change. This 

connectivity was normalized after the training. The change of connectivity in the posterior insula region 

with neurofeedback training was also reported in other rtfMRI-nf studies. Scheinost et al. (2013) 

performed rtfMRI-nf training for subjects with significant contamination anxiety to reduce orbitofrontal 

cortex activation while viewing a contamination-related image. They found reduced connectivity in the 

bilateral mid and posterior insula after training. Nicholson et al. (2017) trained PTSD patients to reduce 

amygdala activity during a symptom provocation task and found a negative correlation between bilateral 

insula activation and state dissociation scores at a transfer run. These indicated that mid and posterior 

insula regions are not specifically representing proprioceptive internal stimulation, but may also be 

responsive to emotional and cognitive tasks. As the decrease in left insula connectivity was also seen for 

the PTSD-sham group (Fig. 3B), this change might not be specifically associated with the 

neurofeedback signal but a general effect of emotion elicitation training. Although the implication of 

normalizing insula hyperconnectivity for the VC group is not clear yet, it is important that no 

exacerbation of PTSD symptoms was observed for the VC participants and even a correlated symptom 

reduction was seen for the PTSD-sham group (Fig. 3B). 

Several limitations in the study merit comment. The number of PTSD-ctrl participants who 

completed the training sessions was small compared to the PTSD-exp group. While we observed 

significant symptom reductions only for the PTSD-exp group, the non-significant result for the PTSD-

ctrl could be due to its small sample size. Despite random assignment, we also found large baseline 

differences between the PTSD-exp and the PTSD-ctrl groups in connectivity (e.g. Fig. 3B). Due to these 

limitations, inferences regarding the specificity of training effects resulting from left amygdala-focused 

neurofeedback remain tentative. We also did not consider individual variability of training success in the 

training sessions for the resting-state analysis. Including such variability might improve the sensitivity of 
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the analysis to detect the effect of training on resting-state connectivity. We note, however, that since the 

treatment effect could be associated with brain regions other than the neurofeedback target region, 

training success might not be defined only by the regulation of the feedback target region. 

We should also note limited sensitivity of the MDMR analysis. While the ROI analysis for left 

amygdala connectivity detected significant hypoconnectivity for PTSD at baseline, this was not detected 

in the MDMR analysis. Also, significant connectivity changes that were detected when we focused on 

abnormal connectivities at baseline were not detected by the longitudinal MDMR. These dissociations 

suggest limited sensitivity of the MDMR analysis. This was partly due to a conservative statistical 

thresholding for whole-brain multiple testing correction. Limited sensitivity was also due to an MDMR 

analysis mechanism. The MDMR evaluates between-subject distance of connectivity maps and this 

distance measure could be relatively insensitive to connectivity change between small regions because it 

summarizes the differences in a large dimensional connectivity map into one measure. The distance 

measure is also insensitive to how connectivity maps differ so that the same distance could be derived 

from different changes in connectivity patterns. These limitations could explain the dissociation between 

the results of ROI-based analysis and MDMR analysis. We need to note that a non-significant result of 

MDMR should not be interpreted as strong evidence of a negative finding. 

5. Conclusions 

The effect of rtfMRI-nf training to increase left amygdala activity with positive memory retrieval 

on resting-state functional connectivity was not restricted to the feedback target region, but also 

observed in multiple connectivities that were associated with emotion regulation and memory retrieval, 

including the lateral prefrontal cortex, SMA, dACC, precuneus, and posterior insula regions. A 

connectome-wide approach using MDMR enables exploratory analysis of connectivity. Despite the 

limited sensitivity of MDMR, this approach is promising for connectome-wide investigation of training 

effects on brain functional connectivity. 
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PTSD patients showed significant symptom reduction after the training that suggests potential 

utility of amygdala neurofeedback training using positive emotion enhancement techniques. 

Interestingly, the symptom reduction did not appear due to a connectivity change in the amygdala, but 

rather connectivities between the SMA and dACC and between the precuneus and the left anterior 

frontal region. This suggests neurofeedback effects may be due to a larger brain network than only the 

targeted region. 

The connectivity changes observed in this study might involve correcting emotion representation 

and memory retrieval. Such an effect could be promoted by positive emotion enhancement training 

rather than suppressing or reappraising negative emotions. Many rtfMRI-nf treatment studies have 

focused on suppressing abnormal activity (Gerin et al., 2016; Hamilton et al., 2016; Linden et al., 2012; 

Nicholson et al., 2017; Paret et al., 2016b; Scheinost et al., 2013; Zilverstand et al., 2015). However, 

promoting positive emotional experience might help correct abnormal emotion representation and could 

have the same, if not more of, a therapeutic effect in treating the biological underpinnings of 

dysregulated emotion and mood disorder symptoms (Young et al., 2017a; Young et al., 2017b). Future 

development of rtfMRI-nf training methods may benefit from further testing of training approaches that 

promote healthy emotional brain responses rather than suppress abnormal responses. 
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Veteran participants 
Participants were adult (age 18 to 55 years) male U.S. military combat veterans. Veterans, 

largely from recent conflicts including OEF/OIF/OND, were recruited from eastern and central 

Oklahoma as well as northwest Arkansas. Potential subjects who called the Laureate Institute for 

Brain Research (LIBR) in response to advertisements and flyers underwent a brief telephone screen. 

During the telephone screen, basic demographic information was collected and an MRI safety screen 

was performed to determine whether the potential subject was eligible for MRI imaging. In addition, 

a brief medical questionnaire was administered to rule out history of any major medical conditions, 

such as stroke or head trauma, that would make the potential subject ineligible for studies at the 

LIBR. Individuals who are deemed eligible based on the telephone screen were then scheduled for an 

in-person screening evaluation. 

Inclusion Criteria. Subjects (i) had to be able to give written informed consent prior to 

participation and (ii) have not had taken psychotropic medication within 3 weeks, or 8 weeks for 

fluoxetine (note that people will not be discontinued from effective medication for purposes of the 

study). Many psychotropic medications have been shown to alter the reactivity of the amygdala to a 

variety of emotional stimuli, and thus would introduce potential confounds in the fMRI data. 

Exclusion Criteria. Volunteers were excluded from participating for the following reasons: 

(i) a clinically significant or unstable cardiovascular, pulmonary, endocrine, neurological, or 

gastrointestinal illness or unstable medical disorder; (ii) meeting DSM-IV criteria for substance 

abuse or substance dependence (other than nicotine) within 3 months prior to screening; (iii) 

endorsing suicidal intent or a suicide attempt within the preceding three months; (iv) current or past 

history of schizophrenia, schizoaffective disorder, bipolar disorder, or dementia; (v) moderate to 

severe traumatic brain injury (history of traumatic brain injury was identified via the Brief Traumatic 

Brain Injury Screen and, as recommended by the Defense and Veterans Brain Injury Center, and 

followed by a clinician interview to validate the screen and determine if the injury was mild, defined 

as loss of consciousness or altered mental status, which did not result in exclusion from the study, or 

moderate to severe, which did result in exclusion from the study) and (vi) inability to complete an 

MRI scan due to claustrophobia or general MRI exclusions (e.g. shrapnel inside body). Subjects with 

vision and/or hearing loss severe enough to interfere with testing and subjects not fluent in English 

were also excluded. 
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Supplementary table S1. Session schedule 

 
Visit 1. Consent 2. Pre-NF 3. rtfMRI-nf 1 4. rtfMRI-nf 2 5. rtfMRI-nf 3 6. Post-NF 7. Follow-Up 

Clinical 

ratings 
CAPS 

HDRS, 

MADRS, 

HAM-A 

HDRS, 

MADRS, 

HAM-A 

HDRS, 

MADRS, 

HAM-A 

HDRS, 

MADRS, 

HAM-A 

HDRS, 

MADRS, 

HAM-A 

CAPS 

Self-ratings TAS, EC 

PCL-M, 

SHAPS, 

VAS, 

POMS 

PCL-M, 

SHAPS, VAS, 

POMS 

PCL-M, 

SHAPS, VAS, 

POMS 

PCL-M, 

SHAPS, VAS, 

POMS 

PCL-M, 

SHAPS, 

VAS, 

POMS 

- 

MRI - 

High-

resolution 

T1- and T2-

weighted 

structural 

MRI; 

fMRI: Rest 

×2, 

ecStroop ×4 

Structural MRI; 

rtfMRI-nf: 

Rest, Practice, 

NF ×3, 

Transfer, Rest 

Structural MRI; 

rtfMRI-nf: Rest, 

Practice, NF ×3, 

Transfer, Rest 

Structural MRI; 

rtfMRI-nf: Rest, 

Practice, NF ×3, 

Transfer, Rest 

High-

resolution 

T1- and T2-

weighted 

structural 

MRI; 

fMRI: Rest 

×2, 

ecStroop ×4 

- 

Post-scan 

self-ratings 
- 

VAS, 

POMS 

VAS, POMS, 

NF debrief 

VAS, POMS, 

NF debrief 

VAS, POMS, 

NF debrief 

VAS, 

POMS 
- 

Note: CAPS=Clinician-Administered PTSD Scale, EC=Emotional Contagion Scale, 

ecStroop=Emotional Counting Stroop task, HAM-A=Hamilton Anxiety Rating Scale, 

HDRS=Hamilton Depression Rating Scale, MADRS= Montgomery-Åsberg Depression Rating 

Scale, NF=neurofeedback, PCL-M=PTSD Checklist military version, POMS=Profile of Mood 

States, SDIP=Script-Driven Imagery Procedure, SHAPS=Snaith-Hamilton Pleasure Scale, 

TAS=Toronto Alexithymia Scale, VAS=Visual Analog Scales  
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Schedules of real-time fMRI neurofeedback (rtfMRI-nf) training 
Visit 1: Consent and Baseline. See Table S1 for an overview of the assessment schedule. 

After obtaining written informed consent from the subject, a clinician administered the CAPS to 

measure PTSD symptom severity at baseline. The subjects also completed two questionnaires, the 

Toronto Alexithymia and Emotional Contagion (TAS and ECS) scales, as well as a questionnaire to 

select relevant positively and negatively valenced words that were used in an emotional counting 

Stroop (ecStroop) task. Finally, a clinician worked with the subject to develop personalized scripts 

for one neutral and one traumatic memory to be used in a script-driven imagery procedure. 

Visits 2 and 6: Pre-Neurofeedback MRI, fMRI, and Behavioral Tasks. First, a clinician 

completed ratings of the subjects’ depression and anxiety symptoms using the HDRS, MADRS, and 

HAM-D. Then the subject completed questionnaires measuring PTSD and anhedonia symptoms as 

well as mood with the PCL-M, SHAMS, VAS, and POMS. On Visit 2 (Pre-Neurofeedback), subjects 

practiced performing the ecStroop task in our mock scanner. The mock scanner is a scale model of 

an MRI scanner that includes a moving table, a mock head coil with a mirror and projector system 

similar to the one in our MRI environment, and a sound system capable of mimicking the sound of 

an MRI sequence. The mock scanner was used to allow subjects to acclimate themselves to the 

physical, visual, and aural restrictions of the scanner outside of the strong magnetic field. 

On both visits 2 and 6, subjects underwent high-resolution structural MRI scans, two eyes-

open resting fMRI scans, and four runs of the ecStroop task. In this task the subject was asked to 

count the number of times a word appeared on the screen. Each word was classified by valence: 

negative, positive, or neutral. During visit 1, the subjects rated the relevance of a list of negatively 

valenced words and a list of positively valenced words. Only the 80 most relevant negative words 

and 80 most relevant positive words were used in the task. Each of the positive and negative words 

was matched with a neutral word for length, concreteness, and frequency of use in the English 

language. Half of the words were used in the pre-neurofeedback session and the other half in the 

post-neurofeedback session (i.e., 40 negative words, 40 positive words, and 80 neutral words per 

session). The neutral words corresponding to these negative and positive words were used in the 

same session. Within each session there were four task runs, each run was composed of 205 trials, 

each trial lasted 2000 ms, and thus each run lasted 6 minutes 50 seconds. Forty-five of the trials were 

fixation trials; for those trials the subject was presented with a fixation cross for 2000ms. The first 

five trials of each run were always fixation trials to allow the fMRI signal to reach steady state. The 

other 40 fixation trials were interspersed with the 160 counting trials. For the first 500ms of a 

counting trial the subject was presented with a fixation cross. For the following 1500ms the subject 

was presented with a word repeated one, two, three, or four times. The subject indicated how many 

words he counted on the screen using a four-button response device accessible by his dominant hand. 

Each of the 40 negative, 40 positive, and 80 neutral words were presented once in each of the four 

runs, and each word was repeated a different number of times in each run. Trial order was 

determined using the FreeSurfer sequence optimizer optseq2. 

Following the MRI session, subjects again completed the POMS and the VAS before 

completing a well-established script-driven imagery procedure (SDIP) (Badour and Feldner, 2013; 

Lang et al., 1983; Pitman et al., 1987). During the SDIP, participants’ respiration, heartrate, and skin 

conductance were recorded by pneumatic belt around the abdomen, pulse oximeter on the finger, and 

two electrodermal activity electrodes placed the first and second fingers, respectively, using a 

BIOPAC MP150 (BIOPAC Systems, Inc.). An experimenter worked with each participant to 

generate individualized scripts of an affectively neutral event (e.g., mowing the lawn) and a script 

describing the index traumatic event identified during the CAPS. As done previously (e.g., Pitman et 

al., 1987), a checklist of specific bodily sensations (e.g., racing heart) was administered to 

participants during script generation to assist in identifying sensations present during the event and 

incorporating them into the scripts. Participants were also asked to include sensory details of the 

experience (e.g., sights, sounds, smells). A male experimenter then used this information to create an 

individualized 30s audio script for each event. The SDIP began with a 10min imaginal rehearsal, 

during which a recorded male voice instructed the subject to imagine a series of scenes as vividly as 



Misaki et al. 

Supplementary materials 

5 

possible. The scenes included positive, neutral, and negative narratives. There was then a five-minute 

resting baseline measurement. Following the resting baseline, the subject filled in the POMS and 

VAS. The subject then listened to their personalized neutral and traumatic event scripts, respectively. 

These 30s scripts were recorded by the same male speaker from the imaginal rehearsal in a neutral 

tone of voice describing, in the second person present tense, the neutral and traumatic memories 

previously described by the subject. Following each script, the subject filled out the RSDI, POMS, 

and VAS. 

Visits 3–5: Real-Time fMRI Neurofeedback Training. On each of the real-time fMRI 

neurofeedack (rtfMRI-nf) training visits, a clinician completed ratings of subjects’ depression and 

anxiety symptoms using the HDRS, MADRS, and HAM-D. Then, subjects completed questionnaires 

measuring PTSD and anhedonia symptoms as well as mood with the PCL-M, SHAMS, VAS, and 

POMS. Next, subjects completed the rtfMRI-nf with passive 32-channel EEG recordings. During the 

rtfMRI-nf session subjects will undergo a Rest run, a Practice run, 3 training runs (Runs 1–3) 

followed by a ‘Transfer’ run, and a second Rest run. Each run lasted 8-min, 40-sec (Fig. 2). During 

the first and the last Rest runs (RE), a resting state paradigm was employed; subjects were instructed 

to clear their minds and not think of anything in particular while fixating on the display screen. All 

other runs consisted of a series of 40s blocks of Rest, Count, and Happy Memories tasks. During the 

Rest condition the subjects were instructed to clear their minds and try to not think of their happy 

memories. The Rest blocks were used as the baseline for the neurofeedback signal. During the Count 

conditions subjects were instructed to mentally count backward from 300 by a given integer. This 

second control condition was used to allow additional time for the amygdala to deactivate. During 

the Happy Memories condition subjects were instructed to recall positive autobiographical memories 

that were specific and vivid while trying control a dynamic red neurofeedback bar. The subjects were 

also shown a static blue bar that served as a target level. For subjects in the experimental and trauma 

control groups, the neurofeedback signal was derived from activity in subjects’ left amygdala, while 

for subjects in the control group (CG), the signal was derived from activity in the left HIPS, a region 

putatively uninvolved in emotion regulation. In the Practice run, subjects were instructed to practice 

recalling three different prepared happy autobiographical memories during the first three Happy 

Memories conditions and to practice with whichever of the three worked best during the fourth 

Happy Memories condition. During the subsequent three training runs subjects were instructed to use 

any positive autobiographical memory that was working well for the task. The target level was raised 

in a linear fashion across the nf runs (Practice, Runs 1–3) to introduce a linear trend in the targeted 

connectivity strength across the runs. Finally, during the Transfer run, subjects were instructed to 

perform the same task as during the neurofeedback training, but no nf information was provided for 

the blocks of the Happy Memories condition. The Transfer runs allowed for assessment of the 

transfer of the learned control over neurobiological activity (i.e., whether, after nf training, the 

training effect generalized to situations where no feedback was available). After the training, subjects 

completed the VAS, POMS, and a debriefing form about what memories and strategies they used 

during the neurofeedback. 

Visit 7: Follow-Up. During the final follow-up visit, a clinician re-administered the CAPS. 

Participants also completed questionnaires about their participation in the study to collect 

information about ways we could improve recruitment and retention of veterans for the study. 

Compensation. All subjects received monetary compensation for their time. The 

compensation rate was $25 per half hour for time spent in the MRI scanner and time spent preparing 

the EEG cap. The rate was $10 per half hour for other activities, including questionnaires, clinical 

interviews, and the script-driven imagery procedure. As our recruitment catchment area was large 

and some participants drove hundreds of miles to the LIBR to participate in the multi-visit study, 

subjects also received $50 gift cards for a local gas station and convenience store chain on visits 1 

and 7. 
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Baseline MDMR analysis to identify abnormal resting-state functional connectivity 
Multivariate distance matrix regression (MDMR) analysis was applied to investigate resting-

state connectivity alteration between PTSD, VC, and NC groups. The analysis procedure and its 

results have been reported in (Misaki et al., under review). This supplementary material is a 

reproduction of it. 

The processed resting-state fMRI image was downsampled to 4mm3 voxels. Only the voxels 

in gray matter regions were extracted from the down-sampled image. This masking resulted in 

extracting 18,693 voxels that were subject to the MDMR analysis. We followed the procedure 

introduced in Shehzad et al. (2014) for the MDMR analysis, which is briefly reproduced here. In 

each voxel, a connectivity map from that voxel to all other voxels was made with Pearson’s 

correlations between signal time-courses of the voxels. The dependent variable of MDMR is a 

distance matrix of the connectivity maps between subjects. The distance of the maps between subject 

i and j, (dij) was calculated with Euclidean distance of Fisher’s z-transformed connectivity maps. The 

MDMR analysis evaluates the association between the distance matrix (dissimilarities of 

connectivity maps across subjects) and the predictor variables in the design matrix, X, using a 

pseudo-F value statistic, 𝐹 =
𝑡𝑟(𝐻𝐺)/(𝑚−1)

𝑡𝑟[(𝐼−𝐻)𝐺]/(𝑛−𝑚)
, where 𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇 is the hat matrix that maps

response values (G) to the fitted value space, m is the number of columns in X, and tr is the trace of 

matrix. G is the mean-centered distance matrix as G = CAC, where 𝐶 = (𝐼 −
1

𝑛
11𝑇), 𝐴 = (−

1

2
𝑑𝑖𝑗
2 ),

n is the number of subjects, I is the n×n identity matrix and 1 is a vector of n 1s. In the current study, 

the design matrix X included two columns of group factors for PTSD and VC, in which 1 indicated 

PTSD and 0 others, and 1 indicated VC and 0 others, respectively. This coding means that NC group 

is a reference group and the effects of PTSD and VC relative to NC were evaluated. X also included 

columns of age and motion size (average FD) as nuisance variables as well as all 1s for the intercept. 

Individual effect of regressors was estimated using a partial design matrix. Hat matrix with effects of 

no interest regressors was subtracted from the full hat matrix as 𝐻𝐼 = 𝐻 − 𝐻𝑁, where 𝐻𝑁 =

𝑋𝑁(𝑋𝑁
𝑇𝑋𝑁)

−1𝑋𝑁
𝑇, and 𝑋𝑁 is a design matrix only with age, motion, and intercept columns. Pseudo-

F value for the sum of the effect of interest, namely the main effect of the group difference, was then 

calculated as 𝐹𝐼 =
𝑡𝑟(𝐻𝐼𝐺)/(𝑚𝐼)

𝑡𝑟[(𝐼−𝐻)𝐺]/(𝑛−𝑚)
, where mI (=2) is the number of the effect of interest regressors. 

Statistical tests for the pseudo-F value were performed with a permutation test. Nuisance 

regressors in the permutation test need to be handled differently from the regressors of interest 

because the effect of interest should be evaluated after excluding nuisance effects. We used the 

Smith procedure (Winkler et al., 2014), in which regressors of interest were orthogonalized with 

regard to nuisance regressors and then the orthogonalized regressors of interest were permuted 

randomly. 10,000 random permutations were performed in the analysis. 

These procedures were repeated for all voxels as a seed, and pseudo-F values (with 

respective p-values) were mapped onto the brain to make a statistical parametric map. We used a 

computationally efficient method introduced by Shehzad et al. (2014), in which evaluations for all 

voxels of all permutations were performed in one-time matrix multiplication. The MDMR statistical 

map was thresholded with voxel-wise p<.005, and then with cluster-size corrected p<.05. Cluster-

size corrected p-value was evaluated with the same permutation procedure as the voxel-wise 

evaluation to avoid an inflated false positive rate (Eklund et al., 2016). 

The post-hoc analysis was performed with the original resolution whole-brain functional 

images (not restricted to gray matter). Seed regions were placed at peak locations of the significant 

clusters in the MDMR statistical map of the group main effect. Peak coordinates in each significant 

cluster separated by at least 30mm were extracted. Seed area was a 6mm-radius sphere centered at 

the peak coordinates of the MDMR statistical map. Average signal time-course of the seed area was 

used as a reference signal to calculate correlations with other voxels. Fisher’s z-transformation was 

applied to the correlation coefficient to make a connectivity map for each subject. A voxel-wise 

general linear model analysis was performed for the connectivity map with the same design matrix as 

the MDMR analysis. t-value maps of each group contrast, PTSD-NC, VC-NC, and PTSD-VC, were 
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calculated and thresholded with voxel-wise p<.005 and cluster-size corrected p<.016 for multiple 

testing of three groups. Cluster-size corrected p-value was evaluated with the permutation test 

(10,000 permutations) using the Smith procedure (Winkler et al., 2014). 
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Supplementary table S2 (reproduced from Misaki et al. (under review)) 
Table S2 includes peak locations and statistical values of post-hoc analyses for connectivity 

differences between the PTSD and NC groups. Local maximum positions separated by at least 30 

mm were extracted from significant clusters. Cluster-size p-values were evaluated by permutation 

test with 10,000 random permutations. L: left, R: right, SMA: supplementary motor area, BA: 

Brodmann area. 

Seed location 

(MNI, x, y, z mm) 

Peak location 

(MNI, mm) 
Brain region 

t 

(PTSD – NC) 

Cluster size 

(2mm3 voxel) 

Cluster-size 

p-value
x y z 

A. L Parahippocampal

(-36, -16, -26)

-34 -44 -22 L Fusiform -5.658 1216 .0021 

-56 -74 10 L Middle Temporal -4.149

38 -44 -22 R Fusiform -6.015 976 .0030 

52 -80 -8 R Middle Occipital -4.693

0 -46 14 R Posterior Cingulate -5.285 513 .0122 

B. L SMA

(-8, -20, 62)

14 34 20 R Anterior Cingulate -5.262 735 .0042 

-38 18 6 L Anterior Insula -4.979 461 .0128 

C. L Insula

(-44, -8, -6)

18 -40 46 R Middle Cingulate 4.403 527 .0135 

D. L Inferior Frontal

(-52, 20, 2)

8 -8 52 R SMA -5.451 1402 .0008 

-32 0 54 L Middle Frontal (BA6) -4.209

E. L Middle Frontal

(-32, 12, 26)

-30 6 30 L Inferior Frontal (BA44) -4.649 714 .0068 

-48 6 0 L Frontal Operculum 

(BA44) 

-4.315

F. L Superior Frontal

(-24, 28, 34)

-12 32 34 L Medial Frontal -5.051 1297 .0018 

-10 -6 46 L Middle Cingulate -4.311

-38 -2 10 L Insula -5.742 1190 .0022 

-26 26 8 L Anterior Insula -5.342

56 18 8 R Inferior Frontal (BA45) -5.472 1182 .0022 



Misaki et al. 

Supplementary materials 

9 

Supplementary table S3 (reproduced from Misaki et al. (under review)) 
Table S3 includes peak locations and statistical values of post-hoc analyses of connectivity 

differences between the VC and NC groups. Local maximum positions separated by at least 30 mm 

were extracted from significant clusters. Cluster-size p-values were evaluated by permutation test 

with 10,000 random permutations. L: left, R: right. 

Seed location 

(MNI, x, y, z mm) 

Peak location 

(MNI, mm) 
Brain region 

t 

(VC-NC) 

Cluster size 

(2mm3 voxel) 

Cluster-size 

p-value

x y z 

A. R Lingual

(4, -68, 2)

10 62 8 R vmPFC -5.569 628 .0062 

B. L Superior Frontal

(-20, 48, 18)

4 -62 40 R Precuneus -4.948 1151 .0016 

54 -66 38 R Inferior Parietal -4.903 521 .0161 

C. L Insula

(-44, -8, -6)

46 -18 4 R Insula 5.333 768 .0057 

24 -58 -2 R Lingual 5.623 564 .0127 

14 -84 24 R Cuneus 4.280 

D. L Middle Frontal

(-24, 0, 46)

-44 -22 58 L Postcentral -5.024 577 .0089 

E. R Transverse Temporal

(56, -24, 10)

6 -64 26 R Precuneus -4.783 551 .0152 

F. R Insula

(44, -8, -2)

64 -16 18 R Postcentral 4.992 1561 .0005 

52 22 34 R Middle Frontal 4.862 

46 -4 -18 R Middle Temporal 4.519 

20 -64 10 R Calcarine 5.736 611 .0066 

-22 -62 54 L Superior Parietal 4.904 552 .0086 

48 24 10 R Inferior Frontal 4.789 513 .0111 

24 -72 52 R Superior Parietal 4.551 495 .0126 

20 -32 8 R Thalamus 5.728 470 .0143 

G. L Superior Temporal

(-48, -24, 6)

-4 -54 34 L Precuneus/PCC -4.292 563 .0147 
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Abstract 15 

We employ a time-dependent Hurst analysis to identify EEG signals that differentiate between 16 

healthy controls and combat-related PTSD subjects. The Hurst exponents, calculated using a 17 

rescaled range analysis, demonstrate a significant differential response between healthy and PTSD 18 

samples which may lead to diagnostic applications. To overcome the non-stationarity of EEG data, 19 

we apply an appropriate window length wherein the EEG data displays stationary behavior. We 20 

then use the Hurst exponents for each channel as hypothesis test statistics to identify differences 21 

between PTSD cases and controls.  22 

23 

Our study included a cohort of 12 subjects with half healthy controls. PTSD cases have bigger 24 

Hurst exponent than healthy controls in channel F3. Our results indicate that F3 may be a useful 25 

channel for diagnostic applications of Hurst exponents in distinguishing PTSD and healthy 26 

subjects.  27 

28 

Keywords: Hurst exponent, EEG, Stationary. 29 

30 

31 
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Introduction 32 

EEG (Electroencephalogram) signal measures voltage temporal variations, which reflect brain 33 

neuronal electrical activity1. The EEG signals contain relevant dynamic information about the 34 

brain’s electrophysiological activity. Thus, prediction and modeling EEG signals is an important 35 

area of biological and biomedical research.2,3 EEG signals feature non-linear and non-stationary 36 

pseudo oscillatory behavior characterizing spontaneous brain oscillations such as alpha waves. To 37 

extract important features of EEG for the diagnosis of different diseases, advanced signal 38 

processing techniques are required. There are various states and conditions that influence the 39 

signals - such as sleep, epilepsy, reflexology, drugs/anesthesia, diabetes, meditation, experiencing 40 

emotions, listening to music - as well as artifacts that influence the signals.4 Long-term and short-41 

term characteristics of EEG time series have been investigated in biological applications,5 and 42 

EEG time series have been studied to identify affected regions of the brain in disease, such as 43 

epilepsy.6  44 

45 

In the current study, EEG was employed to study time-series differences related to post-traumatic 46 

stress disorder (PTSD). In a study of the dynamical complexity of EEG time series in 27 PTSD 47 

and 14 healthy people. Jeong-Ho Chae et al. (2004) found reduced complexity in channels Fp1, 48 

F8, C4, P4, T3, T4, T5, T6 and O1 for PTSD cases.7 Another group calculated non-linear 49 

independence (NI) values of EEG data of 16 channels corresponding to 18 pairs of PTSD and 50 

healthy controls. They showed that, in PTSD patients NI factors increase in channels F3, F7, C3, 51 

T5, P3 and decrease in channels F4, C4, P4, and O2.8 In five case studies, Rutter (2014) determined 52 

diagnosed channels: F3, F4, C3, C4, P3, P4, Fz, Cz, and Pz as the most influenced ones by the 53 

disorder9.54 

55 
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There have been several studies on the application of Hurst exponent to investigate the EEG 56 

signals10. Hurst exponent is a measure of the long-memory properties of the signals.11,12 In this 57 

study, we aim to explore the possibility of developing a Hurst exponent-based method for feature 58 

selection of channels that may be important for prediction. We hypothesize that the long memory 59 

of the EEG signals in the PTSD and healthy control groups differentiate each other. To this end, 60 

we investigate the long-memory properties of the EEG data by applying the time dependent Hurst 61 

analysis using the rescaled range (R/S) technique.  62 

63 

The manuscript is organized as follow. First, the EEG data are described statistically. Next, the 64 

theoretical approach of the Hurst exponent calculation including the R/S analysis method and the 65 

importance of stationary data are explained.  Finally, the results are presented and discussed.  66 

67 

Material and Methods 68 

EEG data were collected at the Laureate Institute for Brain Research as part of a simultaneous 69 

EEG and fMRI study13 conducted on individuals with combat-related PTSD and healthy controls. 70 

The study research protocol was approved by the Western Institutional Review Board.  Human 71 

research was conducted according to the principles expressed in the Declaration of Helsinki.  72 

1. Data description73 

Six PTSD individuals and six healthy controls (mean age = 27 ± 5 years, all male) were involved 74 

in this study. For each subject, EEG signals from 31 channels (Fp1, Fp2, F3, F4, C3, C4, P3, P4, 75 

O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, Pz, Oz, FC1, FC2, CP1, CP2, FC5, FC6, CP5, CP6, TP9, 76 

TP10, POz) were recorded with the ground and reference electrodes positioned at AFz and FCz. 77 

One channel was placed at subject’s back to measure electrocardiogram. The EEG signals were 78 
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recorded at a sampling rate of 5000 samples/s and a resolution of 0.1V. The EEG preprocessing 79 

was carried out in the proprietary software BrainVision Analyzer2 (Brain Products, GmbH). For 80 

further analysis we used EEGLAB software (http://sccn.ucsd.edu/eeglabRef.a). The original data is 81 

attached in supplementary materials. 82 

 83 

For the EEG preprocessing, MRI gradient artifact and cardioballistic (BCG) artifact were removed 84 

using the template subtraction method17,18 After the gradient artifact removal, the EEG data was 85 

down sampled to 250 samples/s (4 ms temporal resolution) and low-pass filtered to 40Hz. Residual 86 

cardio ballistic artifact, as well as blink and saccade artifacts, were removed using independent 87 

component analysis (ICA). PTSD subjects move a lot during the fMRI scan. We ignored the time 88 

periods with subject head motions for further analysis. In the experiment, the scan lasted for 526 89 

s. The first 6 second was removed for steady state signals. There were 130,000 time points in each 90 

channel. For the analysis, we included only 50,000 data points by selecting the first available 91 

50,000 points without subject motion.  Provided that there are sufficient EEG data points to reach 92 

stationarity, using fewer data points does not affect the results statistically but decreases the 93 

calculation time.   94 

For the Hurst analysis, we calculated the temporal changes in the preprocessed data. As we find in 95 

the results, the Hurst exponent differentiates most strongly between healthy and PTSD subjects for 96 

the F3 channel. Thus, we summarize the statistics of the F3 channel data for all subjects (Table 1).  97 

Note that positive skewness and kurtosis of the EEG data are found for both groups of subjects. 98 

The positive skewness indicates the asymmetrical distribution of the EEG signal amplitude with a 99 

long tail to the right. Furthermore, the positive kurtosis suggests that the distribution about the 100 

mean is more peaked than a Gaussian distribution. EEG time-series distributions for channel F3 101 

Commented [c1]: No need to emphasize “original” here, 

since the analysis on the filtered preprocessed data is never 

presented in this work 
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for each subject is shown in Fig.1. The distribution of the other channels is given in supplementary 102 

materials, Appendix I. 103 

Table 1: Summary of EEG statistics for all subjects for channel F3. 104 

 105 

Subject Mean Std. Skewness Kurtosis 

Healthy 28.9012 5.9296 0.0737 2.5290 

PTSD 32.0050 2.6315 0.0398 3.1504 

 106 

 107 

Fig 1: EEG time series distribution for channel F3 for 12 subjects.  108 

2. Theoretical approach 109 

2.1. R/S analysis 110 

R/S method was employed to estimate the Hurst exponent of time series as a measure of the long-111 

range correlation14. This method can be described by the following steps: 112 

Step 1: Calculate the logarithmic retunes of detrended time series with length 𝑁 = 𝑟 − 1, where 𝑡 is the 113 

length of original time series. 114 

                                                              𝑁𝑖 = 𝑙𝑜𝑔 (
𝑡𝑖+1

𝑡𝑖
)       𝑖 = 1,2, ⋯ , 𝑟 − 1                                           (1) 115 

Step 2: Split the time series into 𝑚 adjoining subsets 𝑆𝑗 of length 𝑛, where 𝑚 × 𝑛 = 𝑁, and 𝑗 = 1,2, ⋯ , 𝑚. 116 

The segments of each subset calls 𝑁𝑘, with 𝑘 = 1,2, ⋯ , 𝑛. The average of each subset 𝑆𝑗 is counted by: 117 

                                                                              𝑀𝑗 =
1

𝑛
∑ 𝑁𝑘,𝑗

𝑢
𝑘=1                                                           (2)    118 

Step 3: Calculate the addition of deviation from the average for each subset of 𝑆𝑗 as: 119 

                                                              𝑋𝑘,𝑗 = ∑ (𝑁𝑖,𝑗 − 𝑀𝑗),      𝑘 = 1,2, ⋯ , 𝑛  𝑘
𝑖=1                                  (3) 120 

Step 4: The mean relative range of any single subset which surf the time series is calculated as: 121 

                                                           𝑅𝐼𝑗
= max(𝑋𝑘,𝑗) − min(𝑋𝑘,𝑗),      1 < 𝑘 < 𝑛                                 (4) 122 

Step 5: In this step, standard deviation of each subgroup is considered: 123 

                                                                     𝑆𝐼𝑗
= √

1

𝑛
∑ (𝑁𝑘,𝑗 − 𝑀𝑗)

2
.𝑛

𝑘=1                                                   (5) 124 
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Step 6: The range 𝑅𝐼𝑗
 of each subset rescaled by the related standard deviation 𝑆𝐼𝑗

. Therefore, the average 125 

𝑅/𝑆 measures for each window with length 𝑛 is: 126 

(𝑅/𝑆)𝑛 =
1

𝑚
∑ (

𝑅𝐼𝑗

𝑆𝐼𝑗

)𝑚
𝑗=1 .        (6) 127 

All above steps should be repeated for different time periods.  128 

Step 7: Plot 𝑙𝑜𝑔(𝑅/𝑆)𝑛 versus log (𝑛). The slope of this graph shows the Hurst exponents H. 15129 

Hurst values could be calculated using Rescaled range formula estimated by above steps. 130 

𝑅𝑅 = (2(2𝐻−1) − 1) × 𝑛𝐻                                                    (7)131 

Where 𝐻 the Hurst exponent for each EEG is signal and 𝑛 is the number of data points16,17,18  132 

2.2. Stationarity of data  133 

A time series is considered stationary when its statistical properties such as mean, variance, 134 

autocorrelation, etc., are constant over time. In terms of probability, if the probability distribution 135 

function of a time series does not change with time, it can be considered as a stationary process.19,20136 

In practice, most of statistical forecasting methods are based on the assumption that the time series 137 

can be rendered approximately stationary through the use of mathematical transformations.  138 

139 

R/S method estimates reliable Hurst exponents only for stationary time series while EEG signals 140 

present strong non-stationary characteristics.21 Thus, to investigate the dynamical Hurst exponents 141 

of EEG signals the issue of non-stationarity of data should be resolved.22 To this end, one 142 

possibility is to process the data within a window that is large enough so that the data statistically 143 

behave like a stationary time series. This approach would be beneficial only if the statistical 144 

properties of data such as mean, standard deviation, etc. saturate over an increasing time scale. In 145 

this study, we use the variation of standard deviation versus time (Fig. 2) to estimate the window 146 

width that best fulfills the stationary criterion.  Standard deviation to find the best stationary point 147 

for all channels is coming in supplementary material, Appendix II.  148 Commented [c2]: This sentence is unclear and 

grammatically wrong 
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 149 

Fig 2: Standard deviation of the EEG data against length. 150 

3. Results and discussions 151 

Positive skewness and kurtosis indicate deviations from Gaussian distribution. Our statistical 152 

inferences demonstrate that the EEG data are strongly non-Gaussian (Table 1). To prepare the data 153 

for the estimation of the Hurst exponent, the data are segmented according to the saturation 154 

window length as explained Section 2.2 The saturation window length or, as we call it, the 155 

stationary point for each EEG signal is to be determined by calculating the signal standard 156 

deviation versus time for all 31 channels of all twelve subjects.  157 

 158 

Figure 2 depicts the variation of the standard deviation over time for channel F3 for each of the 12 159 

subjects. Each curve corresponds to a healthy or PTSD subject with 49 windows each with 1000 160 

data. The closest power of 2 for the stationary point is plotted in dotted line. Our results show that, 161 

although for many EEG signals the standard deviation saturates over a few thousand data points, 162 

the largest saturation point that is large enough for both the original and filtered data to be 163 

considered stationary equals 32768 (or 131 second). 164 

 165 

The EEG data can be considered stationary within the window length of 32,768 points.  Next we 166 

perform the Hurst exponent calculations within moving windows of this length for all EEG 167 

channels and subjects. The moving window is defined in such a way that the window of data slides 168 

over the time series each time with the original beginning 1,000 data points removed and the next 169 

1,000 new data points updated at the end of the window For 50,000 data points considered in each 170 

EEG channel, there are almost 17,000 moving windows, and hence, 17,000 Hurst exponents.  171 

Commented [c3]: I had expressed this before, and would 

like to emphasize this again.  
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The Hurst exponents calculated for the representative channel F3 from the preprocessed data are 172 

presented in Fig 3. This figure shows that all subjects, healthy or PTSD, possess Hurst exponents 173 

with highly persistent behavior (H > 0.5). The high Hurst exponent values are indicative of the 174 

existence of strong correlation in the data, which leads to long-term memory of the data. The Hurst 175 

exponent separation between healthy and PTSD subjects is small for channel F3, but there is a 176 

statistically significant difference between the groups (Table 2). We used a Mann-Whitney U test 177 

to investigate the null hypothesis of no difference in the Hurst exponent between PTSD and control 178 

groups. The p-value of F3 reaches statistical significance after a strict Bonferroni adjustment for 179 

multiple-testing (adjusted p-value is .004).  180 

Table 2: Significant unadjusted p-value calculated by Mann-Whitney U test for difference of Hurst 181 

exponent between PTSD and healthy control for F3 channel. 182 

  data Hurst of data Mean Hurst PTSD Mean Hurst Healthy 

F3 2.17E-05 0.000129901 0.9572 0.9234 

 183 

Our findings suggest that the F3 channel discriminates between PTSD and healthy controls based 184 

on the Hurst exponent. The relevance of channel F3 to PTSD is consistent with other reports [8,9]. 185 

Non-linear independence (NI) values of PTSD and Healthy controls calculated by J. Kim and 186 

collaborators show that in PTSD patients NI factors increases in channel F3.8 In five case studies, 187 

Rutter (2014) determined F3 as one of the most influenced diagnosed channel by the disorders.9 188 

 F3 is located in the frontal region of brain, which is related to emotion recognition responsibilities. 189 

Furthermore, it involves the tasks of judgment, planning, sustained attention, inhibition of 190 

responses, verbal episodic memory retrieval, problem solving, sequencing, and deducing facts to 191 

conclusions. Changes in the EEG alpha band have been investigated in multiple studies.2324,25,26; 192 

however, we did not find a significant difference between PTSD and healthy subjects in the Hurst 193 

exponent for the EEG alpha band. The readers may find the Hurst exponents of all the channels in 194 

the supplementary material, Appendix III.  195 

Commented [c4]: see previous comment 
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196 

Fig 3: Hurst exponent distribution. 197 
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Fig 1: EEG time-series distributions for channel F3 for each subject. The red box plots represent 211 

PTSD and green box plots represent healthy controls.  212 

213 

214 

215 

Fig 2: Standard deviation of the EEG data against length: 6 PTSD subjects (orange) and 6 healthy 216 

controls (blue) of channel F3.  217 
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220 

Fig 3: Hurst exponent distribution: 6 Healthy controls (green box) and 6 PTSD cases (red box) of channel 221 
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